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16 CHAPTER 8. APPLICATIONS TO VECTOR SPACES

In this chapter, we will briefly recall some basic facts about vector spaces, investigate
various useful ways to define topologies on vector spaces, discuss the main differences
between finite-dimensional vector spaces and infinite-dimensional vector spaces, and

see some of the foundational theorems for investigating vector spaces with topologies.

The title of this chapter is "Applications to Vector Spaces" as we are going to be
introducing an algebraic structure to our topological spaces. Once we do this, we are
venturing away from a purely topological study and towards areas of mathematics
such as Linear Algebra and Functional Analysis. Nevertheless, this is a course in

topology, so we will mainly focus on the topological properties of these spaces.

The purpose of this chapter is to illustrate the necessity for a thorough understanding
of topology in other areas of mathematics, in this case, a study of vector spaces. In
this chapter, we will see that many of our important topological theorems, such as
The Baire Category Theorem and Tychonoff’s Theorem, are essential to answer some
of our most fundamental questions about vector spaces. This chapter is by no means
a thorough investigation into vector spaces endowed with a topology as this is an

incredibly large field of study.

8.1 Vector Spaces

Most, if not all, of the material in this section should be familiar to the reader who

has taken an introductory Linear Algebra course.

Definition 8.1.1. A vector space over a field K (the set K is either R or C) is a
set X, a mapping + : X x X — X called "addition" and a mapping - : K x X — X
called "scalar multiplication", where we denote +(x,y) = = + y and (o, z) = ax,
such that

(i) there exists 0 € X such that 0 + x = x, for all z € X,
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(ii) for all x,y € X, we have z +y =y + z,
(iii) for all z,y,2 € X, we have x + (y + 2) = (z + y) + 2,
(iv) for all z € X, there exists —z € X such that z + (—x) = 0,
(v) for all a,f € K and 2 € X, we have a(fx) = (af)x,
(vi) for all o, 8 € K and z € X, we have (o + )z = ax + fz,
(vii) for all « € K and z,y € X, we have a(z + y) = ax + ay, and
(viii) 1z =z, for all z € X.
Some immediate consequences of the above properties are that 0z = 0 and (—1)z =
—x. Also, the general convention is that  — y is defined to be z + (—y).

If X is a vector space over the field R, then we call X a real vector space whereas,
if X is a vector space over the field C, then we call X a complex vector space. If
we make a statement about a vector space X over the field K, then the statement is
true for K =R and K = C.

Example 8.1.2. (i) The real vector space that we are most familiar with from
Linear Algebra would be R", for some n € Z,, where addition and scalar

multiplication are defined component-wise. That is,

1 (1 1+ W% 1 ary
T Yo To + Y2 9 QT
Ty Yn Tn+ Yn Ty Ty

(ii) The most familiar complex vector space is C", for some n € Z,, where addition

and scalar multiplication are define component-wise.
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(iii) The set R® forms a real vector space where we define addition by (f + g)(z) =
f(z) + g(x) and scalar multiplication by («f)(x) = af(z).

(iv) The set of all real-valued sequences R™ is a real vector space where (z,,)%%, +

Wn)ply = (20 +yn)ply and a(x,)pl; = (@r,)2.

The observant reader has perhaps noticed that all of the examples above are par-
ticular cases of a more general example. Given our field K, which is either R or C,
the product space K’ is a vector space where we define the addition of two elements
f:I—-Kandg:I— Kby (f+g)i)= f(i)+ g(i) and scalar multiplication by
(af)(i) = af(i). In example (ii), K = C and I = Z,, while in examples (i), (iii),
and (iv), K =R, while / = Z,, in (i), I = R in (iii), and I = Z, in (iv).

Definition 8.1.3. Let X be a vector space and let V' be a subset of X. We say V'

is a subspace of X, if

(i) for all z,y € V', we have that z +y € V, and

(ii) for all @ € K and z € V, we have that az € V.

Note that if X is a vector space and V is a subspace of X then V is a vector space
itself. It inherits the commutative, distributive, and associative properties from X
while property (ii) implies that if € V, then —2 = (—1)z € V and so property (i)
implies 0 =z + (—z) € V.

Example 8.1.4. (i) Recall the sets cqg, co, and ¢ from Chapter 1. The set ¢y is
the set of all real-valued sequences with finitely many nonzero coordinates, the
set cg is the set of all real-valued sequences which converge to zero, and the
set ¢ is the set of all real-valued sequence which converge. All three sets are
examples of subspaces of R¥. Further, we have that cogo C ¢y C ¢ s0 cgo and ¢

are also subspaces of ¢ while ¢y is a subspace of ¢g.
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(ii) From Corollary ?? we know that if f,g € C(R) (recall that C(R) is the set of
all continuous functions f : R — R) then f + g € C(R) and af € C(R) thus,
C(R) is a subspace of RE.

(i) Let B(R) be the set of all bounded functions f : R — R. Then B(R) is a

subspace of RE.

(iv) Recall that C([a,b]) is the set of all continuous functions f : [a,b] — R and let
B([a,b]) be the set of all bounded functions f : [a,b] — R. Then C([a,b]) and
B([a, b]) are subspaces of RI*¥. Let f € C([a,b]). Since [a,b] is compact and f
is continuous, the set f([a,b]) is compact. Then, by The Heine-Borel Theorem,
f(la,b]) is bounded and so f € B([a,b]). Thus, C([a,b]) is a subspace of
%([a, )

(v) Let P([a,b]) denote the set of all polynomials from [a, b] into R. Then P([a, b))
is a subspace of C([a,b]). Further, if P(R) is the set of all polynomials from
R into R, then P(R) is a subspace of C(R). Further, if P,([a,b]) denotes the
set of all polynomials of degree less than or equal to n defined on [a, b], then
P,([a,b]) is a subspace of P([a,b]) while P,(R) (the set of all polynomials of
degree less than or equal to n defined on R), then P,(R) is a subspace of P(R).

Definition 8.1.5. Let X be a vector space over the field K and let B C X. We say
the set B is linearly independent if for every n € Z, and every x1,2s,...,2, € B

the statement

a1y + asxy + - - + apx, =0, for some aq,qs,...,q, €K
implies
ap =g =---=aq, =0.
Definition 8.1.6. If X is a vector space and x1, 2o, ...,x, € X, for some n € Z_,
then a linear combination of z,zs,...,, is a vector of the form a2, + asxy +

-+ T, for some aq, s, ..., q, € K.
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Definition 8.1.7. If X is a vector space and V is a subset of X, then the linear
subspace generated by V or the span of V is the set of all linear combinations
of elements of V' and is denoted by Span(V).

Exercise 8.1.8. Let X be a vector space over K and let V' C X. Prove that Span(V)

is a subspace of X.

Definition 8.1.9. A subset B of a vector space X is called a Hamel basis of X if
B is linearly independent and Span(B) = X.

Example 8.1.10. (i) Consider the vector space R™, for some n € Z, and let

B ={ej,ey,...,e,}, where
0
0 0
€1 = y €2 = yeeey En =
0 0 1

Then B is a Hamel basis for R™.

(ii) Consider the vector space P(R) and the set B = {1,z,22 2%,...}. Then B is
a Hamel basis for P(R).

(iii) Consider the vector space R*. Then R™ does not have a Hamel basis nor does
its subspaces ¢q or ¢. If we consider the subspace cqo, then B = {ey,es,€3,...}
is a Hamel basis for ¢y where e; = (1,0,0,0,...), e = (0,1,0,0,...), e3 =
(0,0,1,0,...), etc.

(iv) The vector spaces C([a,d]), B([a,b]), C(R), B(R), and R¥ do not have Hamel

bases.
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It should be stressed that linear combinations of vectors are defined to be finite sums
of scalar multiples of vectors. Thus, for a set B to span a vector space X, every
element of X needs to be expressable as a finite sum of scalar multiples of elements
of B. The reader might wonder why we don’t allow for infinite sums but, remember,
an infinite sum is defined as the limit of its sequence of partial sums. We cannot
discuss limits of sequences without any topological structure. If we want to discuss a
different kind of basis (no longer a Hamel basis) which allows for infinite sums, then

we would need to introduce a topology to our vector space.

Definition 8.1.11. Let X be a vector space and suppose B is a Hamel basis for X.
If |B] = n, for some n € Z,, then we say the vector space X is finite dimensional
and say X is an n-dimensional vector space. We write dim(X) = n. Otherwise, we

say the vector space X is infinite dimensional.

The next exercise checks that our above definition makes sense.

Exercise 8.1.12. Let X be a finite dimensional vector space and suppose B and C
are Hamel bases for X. Prove |B| = |C].

Definition 8.1.13. Let X and Y be vector spaces over the same field K. We say a

function T : X — Y is a linear operator (or linear transformation) if

(i) T(z+y)=T(x)+T(y) for all xz,y € X, and

(ii) T(ax) = aT(x) for all « € K and all z € X.

Note that if 7" is a linear operator, then 7°(0) = 0 from the properties above. Also,for
a linear operator 1", we often write T'(x) = Tz. If X and Y are vector spaces, then
we denote the set of all linear operators 7': X — Y by L(X,Y). If X =Y then we
write L(X) rather than L(X,X). In Linear Algebra, we learn that when X = R”
and Y = R™, then L(X,Y) is precisely the set of all m x n matrices with real-valued

entries. We will denote the set of all m x n matrices with real-valued entries by
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M xn(R). Thus, we have L(R", R™) = M,,x,(R). We also learn in linear algebra
that M,,«,(R) is a vector space with matrix addition and scalar multiplication. The
same is true for L(X,Y) for any vector spaces X and Y as the reader is asked to

prove in the next exercise.

Exercise 8.1.14. Let X and Y be vector spaces over the same field K. Prove
L(X,Y) is a vector space over the field K where we define (L + M)(z) = Lx + Mx
for all L, M € L(X,Y) and x € X and (aL)(z) = aLx for all « € K and = € X.
Note that L(X,Y) C YX where we defined vector addition and scalar multiplication

component-wise so it suffices to prove that L(X,Y) is a subspace of Y.

For those who have taken an abstract algebra course, a homomorphism between two
algebraic structures of the same type (groups, rings, vector spaces, etc.) is a function
from one structure to the other which respects the operations. Thus, the set of all
linear operators L(X,Y') is precisely the set of all vector space homomorphisms from
X to Y. More specifically, M,,x,(R) is the set of all vector space homomorphisms
from R"™ to R™.

An important property for linear operators is whether or not they are continuous.
Currently, we have no way to discuss the continuity of linear operators though be-
cause, once again, continuity requires a topological structure. This leads us to the

topic of the next section.

8.2 Vector Topologies

Definition 8.2.1. Let X be a vector space and let 7 be a topology on X such that
the addition map + : (X x X,0) — (X, 7) is continuous, where o is the product
topology on X x X, and the scalar multiplication map - : (K x X,v) — (X, 7)

is continuous, where ~ is the product topology on K x X, where K has the usual
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topology. Then we say 7 is a vector topology and refer to (X, 7) as a topological

vector space or linear topological space.

Thus, a topological vector space is a vector space endowed with a topology which
makes the operations continuous. That is, given nets ())xea, (¥x)rea in X and a
net (ay)rea in K we have that, if zy — =z, y» — y, and a, — a, for some x,y € X

and o € K, then (z) 4+ y)) = (z +y) and ) — ax.

The most prevalent types of topologies given to vector spaces are weak topologies
generated by sets of functions and topologies generated by norms. We will start by

looking at topologies generated by norms.

Definition 8.2.2. Let X be a vector space over the field K. A norm on X is a map
| -1l : X = R, where we denote || - ||(x) by ||z||, such that

(i) [|z|| >0, for all x € X,
(ii) ||z|| = 0 if and only if x = 0,
(ili) ||az|| = |||z, for all z € X and «a € K, and

(v) [lz+yll < llzll + llyll, for all z,y € X.

If || - || is @ norm on X, then we call (X, || -||) a normed vector space.

Note that in property (iii) above, if K = R, then |a/| is the absolute value of « while,
if K = C, then |o| is the modulus of . We refer to ||z| as the norm of x. We

typically think of ||z|| as the magnitude, or size, of the vector z.

Example 8.2.3. (i) We can define R to be a vector space over the field R and
define the norm by |[z|| = |z| for all z € R. It is easy to check properties (i)
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through (iii) in the definition of the norm. Property (iv) is simply the triangle

inequality for the usual metric d on R. That is,
[z +y = d(z,—y) < d(z,0) +d(0, —y) = || + [y].

For this reason, property (iv) of the definition of a norm is usually referred to

as the triangle inequality for norms. Thus, (R, || - ||) is a normed space.

(ii) Let n € Z, and consider K" to be a vector space over K. Let dy be the usual
metric on K™ and define ||z|| = da(x,0). Then || - || is a norm on K". Proving
this fact is an exercise below. We typically denote the norm here by || - ||2 and

it is referred to as the ¢5-norm on K" or the Euclidean norm on K”.

(iii) The set ¢ of convergent sequences of real numbers is a vector space over R. Let
()22, € c. Recall that convergent sequences are bounded. Thus, {|z,|:n €
Z.} is a set of real numbers which has an upper bound. Hence, it has a least
upper bound. Define ||(z,)22,|| = sup{|z,| : » € Z;}. Then | - || is a norm
on c. Proving this fact is an exercise below. We typically denote this norm by

| “ [oo- Thus, (¢, ] + ||o) is a normed space.

(iv) The vector space C([a, b]) is a normed space if we define || f|| = sup{|f(z)|: = €
[a,b]} and recall that continuous functions on compact sets must be bounded.
Thus, the set f([a,b]) has a least upper bound. We typically denote this norm
by ||+]|s and refer to it as the supremum norm, or by |- |l where the U refers to
the "uniform norm." For those who have taken an analysis course, a sequence
of functions in (C([a,b]), || - |l«) converges to a function f precisely when the

sequence converges uniformly to f. Hence, the use of the letter U.

Exercise 8.2.4. (i) Prove (¢, || - ||«) is @ normed space.

(ii) Prove (K", ||-||2) is a normed space. Hint: You do not have to prove the triangle
wnequality from scratch. It is much easier to use the triangle inequality for the

metric dy to prove the triangle inequality for the norm || - ||o.
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If (X,||-]) is a normed space, then we can always define a metric d on X by
d(z,y) = ||z — y|| for all z,y € X. If you recall in Chapter 2 when discussing the
motivation for metric spaces, we defined them the way that we did because we did
not always have a meaningful way to define substraction on our set or to define the
magnitude of an element of the set. For normed spaces, we have both so we have
come full circle and are able to define distance in this way. Since we can define a
metric d on X, we can define the topology 7 generated by d. Thus, (X, 7) becomes a
topological vector space whose topology is generated by a metric. When discussing
the normed space (X, | - ||), it is standard to assume that we are considering it a
topological vector space whose topology is generated by the metric d above. Thus,
normed spaces are metric spaces and everything that we have learned in previous
chapters about metric spaces applies to normed spaces. One important property

about metric spaces, as we have already seen, is completeness.

Definition 8.2.5. A complete normed space (X, || - ||) is called a Banach space.

Just to reiterate what we were discussing in the previous paragraph, when we say
the normed space (X, || -||) is complete, we mean the metric space (X, d) is complete,
where d(z,y) = ||z —y|| for all 2,y € X. Whenever we discuss topological properties
about a normed space (X,|| -||) it is because the metric space (X, d) has those

properties.

Example 8.2.6. (i) For any n € Z,, the normed space (R™,|| - ||2) is a Banach
space. Let (Tx)72; be a Cauchy sequence in R™, where Ty, = (14, Tag, - -, Tnk)-
Fix i = 1,2,...,n and consider the sequence (z;;)5>; in R. For € > 0, pick
K € 7Z, such that, for all k1, ko > K, we have that ||Tx, — Ty, || < €. Thus,

N 1/2
iy — Tiko| < (Z |k — :cj,k2!2) <e
=1

and so (z;;)p>; is a Cauchy sequence in R. Since R is complete, there exists

y; € R such that z; koo, yi. Let ¥ = (y1,y2,...,Yn). Let € > 0. Since there
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are only finitely many coordinates in R", pick K € Z, large enough so that

|z — uil < o7 forall k> K and all i = 1,2,...,n. Then,

. 1/2 " o\ 1/2
€
|z, — 9| = |z — yi|2 < (-) =e.

Hence, T, — 3. Thus, (R", dy) is complete and so (R™, || - ||2) is a Banach space.
A similar argument shows that C" is also a Banach space over the field C when

we define ||Z]| = d(z,0), where d is the usual metric on C".

(ii) The normed space (cgp, || ||oo) is not a Banach space. Note that ¢ is a subspace
of ¢ so the norm || - || is well-defined on cyy. To see that ¢y is not complete
with this norm, for all n € Zy, let 7, = (1,1,%,...,2,0,0,...). Then (7)52,

is a Cauchy sequence in coy. Indeed, let € > 0. Pick N € Z, such that N > %
Then, for n > m > N, we have

Iz Zol 1 1 1 1 - -
Tp— Tl =sup ———, ———, ...,
P m-+1"m-+ 2 n m+ 1 m N

However, the sequence (7,)5; does not converge to an element of cypy. As a

sequence inside of ¢, we have that T, — T where T = (£)72, but T & cgo.

(iii) The normed space (C([a,b]), || - [|«) is a Banach space although this fact re-
quires some introductory analysis to justify. For those who have taken analysis,
since continuous functions on compact sets are uniformly continuous and se-
quences converge in C([a, b]) precisely when they converge uniformly, the limit

of any convergent sequence would be continuous on [a,b] and thus an element
of C([a,b]).

Definition 8.2.7. Let (X, | - |l1) and (Y| - ||2) be normed spaces over the same
field and let T € L(X,Y). We say the linear operator 7" is bounded if the set
{[|Tx]|2]|x € X and ||z||; < 1} is bounded.
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The reader is asked to prove a very useful inequality in the next exercise.

Exercise 8.2.8. Let (X, || - |1) and (Y, || - ||2) be normed spaces over the same field
and let T € L(X,Y). If T is bounded, then there exists C' > 0 such that, for all
x € X, we have ||Tz|s < C||z1.

Theorem 8.2.9. Let (X, || - ||1) and (Y, - ||2) be normed spaces over the same field

and let T € L(X,Y). The linear operator T is continuous if and only if it is bounded.

Proof. We will prove the forward direction by contrapositive so suppose {||Tz|]2 |z €
X and ||z|; < 1} is not bounded. Then, for every n € Z,, there exists y, €
{[|Tx]2]x € X and ||z|l; < 1} such that ||Ty,||2 > n. Note that ||y,|; = 1, for all
n € Zy. Let x, = +y,. Then,

1 1
[0 = Olly = =[lynlls = — =0,
n n

thus, x, — 0. But,
1
1T2n = TOllz = | T2ullz = —lITynll2 = 1

and so T'x,, - T0. Hence, T' is not continuous.

For the other direction, suppose {||Tz|2 |2 € X and ||z|; < 1} is bounded. From
Exercise 8.2.8, there exists C' > 0 such that |Tz|ys < C||z||1, for all x € X. Let

(2,)22, be a sequence in X such that x, — z, for some x € X. Then,
|Tx, —Tx|2 < C|lx, — |1 — 0

and so T'x,, — Tx. Hence, T is continuous. O

Thus, for linear operators, the words "continuous" and "bounded" are synonymous.
We tend to say "bounded" rather than "continuous" though. If (X,| - |1) and
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(Y, |l - [|2) are normed spaces over the same field, we denote the set of all bounded
linear operators 7' € L(X,Y) by B(X,Y). If (X,| -|1) = (Y,] - [|2), then we write
B(X) instead of B(X, X).

Exercise 8.2.10. Let (X, | - ||1) and (Y,|| - ||2) be normed spaces over the same
field. Prove that B(X,Y) is a vector space. Hint: We already know that L(X,Y)
is a vector space and B(X,Y) C L(X,Y), so it suffices to show that B(X,Y) is a
subspace of L(X,Y).

Notice that if T € B(X,Y), then, by definition, {||Tz|[s]* € X and ||z|| < 1} is a

bounded subset of R. Thus, it has a least upper bound. Hence, we can define
|7 = sup{||Tz[|2| x € X and [[z[| < 1}.

With the norm | - ||, the set B(X,Y) is a normed space as the next proposition

verifies.

Proposition 8.2.11. Let (X, || - ||1) and (Y,|| - ||2) be normed spaces over the same
field. For every T € B(X,Y), define

1T} = sup{[|Tz|lz| # € X and |[z]| < 1}.

Then || - || is a norm on B(X,Y).

Proof. To verify property (i) of the definition of a norm, note that for any z € X,
we have ||[Tz||y > 0, thus ||T|| > 0.

For property (ii), if ||T']] = 0, then || Tz||s = 0 for all z € X such that ||z||; < 1. Then,
for any z € X \ {0} we have that Hﬁ”l <1 so ||”€ﬁ||2 = 0. Hence, ||Tz|s =0

and so T'r = 0. Thus, we have that Tx = 0 for all z € X and so T' = 0. The other
direction is trivial since, if 7' = 0, then {||Tz||2|z € X and ||z|; < 1} = {0}.
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For property (iii), let x € X such that ||z||; <1 and let o € K. Then,
laTzl[; < [af|T=]] < |of|T]

and so |a|||T|| is an upper bound for {||aTz|s|z € X and ||z]; < 1}, and so,
|aT|| < |al||T||. For the reverse inequality, let epsilon > 0. Then there exists
r € X, where ||z|; <1 such that ||T|| < ||Tx]]> — €(Ja| + 1)~*. Thus,

T < laTzlls — e < [T =«
Since this holds for all € > 0, we have that |o|||T|| < ||aT|| and therefore |af||T|| =
laT][.

For property (iv), let 7', S € B(X,Y) and let x € X such that ||z|; < 1. Then,
(T + S)zlla < | Tllz + [[Szlls < 1T + [IS]]-

Thus, ||T']| + ||.S]| is an upper bound for the set {||(T'+ S)z||2 |z € X and ||z|; < 1},
and so | T+ S|| < ||T]| + ||S]-

Hence, we have shown that || - || is a norm on B(X,Y). O

The norm defined on B(X,Y) in the previous proposition is often referred to as the
operator norm as there are other ways to define norms on sets of bounded linear
operators. Notice that if 7" € B(X,Y), then, for any x € X \ {0}, we have that
I T (=) |l2 < ||T||. Thus, for all z € X, we have the inequality ||Tx||2 < ||T|||z]1-

llll1

Obviously, we would like to know when B(X,Y") is a Banach space. The next theorem

provides us with an answer to this question but we first need an exercise.

Exercise 8.2.12. Let (X, || -||) be a normed space.

(i) Prove that for all z,y € X, we have |||z| — |ly]|| < |l — y||-
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(ii) Use the above inequality to prove that if (x,,)>, is a sequence in X such that

x, — z, for some x € X, then ||z,| — ||z

Theorem 8.2.13. Let (X, ||-||1) be a normed space over the field K and let (Y, ]| -||2)
be a Banach space over the field K. Then B(X,Y) is a Banach space.

Proof. Let (T,,)22, be a Cauchy sequence in B(X,Y).
Claim: For all x € X, we have that (7,,2)5°, is a Cauchy sequence in Y.

n=1

Let z € X \ {0} and let € > 0. Since (7,,)22, is Cauchy, there exists N € Z, such

n=1

that, for all n,m > N, we have that ||T,, — T,,|| < 5. Thus,

[/l

1T = Tonll2 < [T = Tonlll|2]]y < €

and so (7,7)5°, is a Cauchy sequence in Y.

Since Y is complete, there exists y, € Y such that T,z — y,. Define T': X — Y by
Tz = y,. Thus, we have our candidate for the limit of the sequence (7},)%° ;. It is

n=1"
left to show that T is linear, bounded, and that T,, — T.

First, we show T is linear. Let 1,25 € X. Then,

T(z1+22) = lim T, (x14x2) = lim (T, 21+ T,22) = lim T2+ lim T2y = Tz1+Txs.
n—oo n—oo n—o0 n—oo

Similarly, for a € K and z € X, we have

T(az) = lim T,(az) = a lim T,z = oT'x.
n—oo n—oo

Hence, T is linear.

Now, to show 7" is bounded, pick N € Z, such that, for all n,m > N, we have that
|1, — Trn|| < 1. Then, for x € X such that ||z|| < 1, we have from Exercise 8.2.13
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that ||Tx||2 = lim, o ||Thx]|2. Thus,

|Tz||s = lim ||T,z]2
n—oo
< lim ||T,z — Tzl|ls + | Tzl
n—o0

< lim ([T, = Tiv|[ll2l[y + ([Tl

n—oo
[zl + T
< T+ [Tl

IA

Thus, T' is bounded.

Lastly, to show T,, — T, let € > 0 and pick N € Z, such that, for all n,m > N, we
have that ||T,, — T),|| < §. Then, for € X such that [|z[; <1 and n > N, we have

. € €
(T~ Thels = Jim [[(To ~ Todells < T~ Tullfalh < Sl < <
Hence, T,, — T and so B(X,Y) is complete. ]

Thus, B(X,Y') is a Banach space if its codomain is a Banach space. Of particular

interest is when the codomain is R.

Definition 8.2.14. Let (X, || - ||) be a normed space over the field K. A linear
functional is a linear operator f : X — K. The set of all bounded linear functionals
from X into its scalar field K is denoted by X* and is called the dual of the normed
space X.

Exercise 8.2.15. Let (X, | - ||) be a normed space and let f be a linear functional
on X. The functional f is bounded if and only if f~1({0}) is closed.

An immediate consequence of Theorem 8.2.13 and the above definition is the follow-

ing corollary.

Corollary 8.2.16. If (X, | - ||) is a normed space, then X* is a Banach space.
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Proof. The set X* = B(X,K). Since K can be thought of as a Banach space over
the field K, Theorem 8.2.13 finishes the proof. ]

Given a normed space (X, ||-]|1), we can now discuss its dual Banach space (X*, ||-||).
Thus, we can discuss the dual of (X*, | - ||), which we denote by X** and refer to it
as the bidual of the normed space (X, || - ||1). Note that the bidual is also a Banach
space. We can continue in this fashion to define X** X*** etc. but we almost

never have a need to define more than the dual and bidual.

There are many motivations for studying the dual and bidual of a normed space and
we will see some of them later in this chapter. One motivation is that it gives us a
convenient way to describe the completion of a normed space. In order to do this, we

first need another important Theorem called The Hahn-Banach Extension Theorem.

8.3 Hahn-Banach Extension Theorem

The Hahn-Banach Extension Theorem gives us a convenient way to extend a func-
tional defined on a subspace of a vector space to the entire vector space. There are
more general statements of the Hahn-Banach Extension Theorem but the version we
will look at in this section will suffice for our purposes. Before seeing the theorem,

we first need a lemma.

Lemma 8.3.1. Let (X, || - ||) be a real vector space and suppose there exists a map
p: X — R such that

(i) p(x +y) < p(x) +ply), for all v,y € X, and

(i1) p(tx) = tp(x), for all t € [0,00).

Further, suppose ¢g : M — R is a linear map and ¢o(x) < p(x) for allx € M. Then,
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there exists a linear map ¢ : X — R such that ¢y = ¢o and ¢(x) < p(x), for all
x e X.

Proof. Let P be the set of all ordered pairs (Y, ), where Y is a subspace of X which
contains M and v :Y — R is a linear map such that v|y; = ¢ and y(z) < p(zx) for
all x € Y. Define the relation < on P by (Y1,71) < (Ya,72) if and only if Y; C Y5

and o]y, = 71. Then it is easy to check that P with the relation < is a poset.

We are now going to use Zorn’s Lemma to prove P has a maximal element with
respect to this relation. To this end, let C = {(Y;,7:)|¢ € I} be a chain in P. Let
Y = UierY; and v = U;eryi, where we consider 7; C Y; x R. Since C is a totally
ordered set, Y is a subspace of X and v : Y — R is a linear map. Further, for x € Y,
there exists ¢ € I such that x € Y. Since (Y;,v;) € P, we have that v;(z) < p(z).
Then, since vy, = 7;, we have that v(z) = v;(z) < p(z) and so (Y,~) € P. Clearly,
(Y,7v) is an upper bound for C. Thus, by Zorn’s Lemma, there exists a maximal
element (Z, «) of P.

The proof will be complete if we show that Z = X. Suppose not. Let xy € X \ Z.
Define Z; = {z + tzg| z € Z and t € R}. Clearly Z is a subspace of X and Z C Z.
Let 21,20 € Z. Then,

a(z1) + a(z) = a(z + 22)
< p(z1 + 22)

p
p(z1 — mo) + p(22 + o).

IN

So,

a(z1) —p(z1 — xo) < p(22 + o) — af22)

< inf (p(z2 + xo) — a(z2)) .
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Thus,

sup (a(21) = p(z1 — 20)) < nf (p(22 +20) — alz2)).

Pick s € R such that

sup (a(z1) = p(z1 — 20)) < 5 < inf (p(22 + 7o) — a(22)).

Define ay : Z; — R by a;(z + txg) = a(z) + ts. Clearly, ay|z = a. Further, since
s <inf,,ez (p(2z2 + x0) — a(22)), for any z € Z, we have that a(z) + s < p(z + xo).
So, for t > 0,

ai(z + txg) = az) + ts
=t () +)
;o)

= p(z + txo).

Similarly, since sup, ¢, (a(21) — p(z1 — x0)) < s, for any 2z € Z, we have that a(z) —

s < p(z — xg). So, for any t < 0,

a1(z +trg) = a(z) +ts
~(a(3) -9
<5

= p(z + ts).

Thus, a(z + tzg) < p(z + txg) for all z € Z and t € R. Hence, (Z,a) < (Z;,aq) and
Z # 7y contradicting the maximality of (Z,«). Hence, we must have that Z = X
and the proof is complete. O

We are now ready to prove a version of The Hahn-Banach Extension Theorem.
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Theorem 8.3.2. (Hahn-Banach Extension Theorem) Let (X, ||-||) be a normed
space over the field K and let X, be a subspace of X. Suppose ¢y € X(. Then there
erists ¢ € X* such that ¢|x, = ¢o and ||p]| = ||Pol|-

Proof. Case 1: First, suppose K = R.

Define p : X — R by p(z) = ||¢o||||z||. Clearly p satisfies properties (i) and (ii) of
Lemma 8.3.1 and ¢g(z) < |oo(z)| < ||¢ol|||z|| = p(x) for all x € X;. Thus, by Lemma
8.3.1, there exists ¢ : X — R such that ¢|x, = ¢¢ and ¢(z) < p(x) for all z € X.

Let x € X. Then, for k =1, 2,
()] = (1) é(x) = ¢((—1)*x) < p(x) = llgoll | (=1)*z[| = llgo] |-

Thus, ¢ € X* and ||¢|| < ||¢o||. Further,

{loo(@)] - x € Xo, |lz]] <1} = {lo(x)] - w € Xo, ||zf| < 1}
C {lo(@)] -2z e X, [la]| <1}

and 50 [|gol| < [[¢][. Thus, |[gol| = [|¢]-

Case 2: Suppose K = C.

Let ag(z) = R(po(x)), for all z € X and let fy(z) = S(po(z)) for all x € X,. Note
that for all x € X, we have

go(iz) +ifo(iz) = do(iz) = ido(x) = —Fo(x) + igo ().
Hence, fy(x) = —ap(iz), for all z € X.

Now, if we g : X9 — R is a linear map, where we consider X, to be a real vector
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space by restricting scalar multiplication to R. Further,
ao(2)] < léo(@)| < I6olllz], for all = € Xo.

Thus, by Case 1, there exists o : X — R, where we restrict scalar multiplication on
X to R, such that a|x, = a and |a(z)| < [[¢o||[|z]], for all z € X.

Next, define ¢ : X — C by ¢(x) = a(x)—ia(iz) and note that since fy(z) = —ap(iz),
for all z € X)), we have that ¢|x, = ¢o. Now, let z € X. Then ¢(z) = re'? for some
r >0 and # € R. Then,

6(2)] = e o(z) = dle ) = ale ™ 2) < |ale )| < llgollle ]l = [l olll].
Thus, ¢ € X* and [|¢]| < [[do. Lastly,

{Igo(@)] - x € Xo, |lz]] <1} = {lo(z)] - w € Xo, |Jzf| < 1}
C{lo()]:z e X, [laf| <1}

so we also have that ||¢o| < |||l O

Exercise 8.3.3. Let (X, || - ||) be a normed space over the field K.

(i) Prove X* separates points of X. Hint: Let x,y € X where x # y and let
Xo = Span{x,y}. Define fo : Xo — K by folax + By) = a. Then fy € X{.
Now, use The Hahn-Banach Eztension Theorem to find f € X* such that
f(x) # fy).

(ii) Let z € X. Prove there exists f € X* such that ||f]| = 1 and f(z) = [|z]|.
Hint: Let Xo = Span{x} and define fy € X§ by fo(ax) = a||z||. Use The Hahn
Banach Extension Theorem to find f € X* such that || f|| <1 and f(z) = ||z
Then, the fact that ||f|| < 1 and f(x) = ||z|| implies that actually || f]] = 1.
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8.4 Completions of Normed Spaces

Recall from Section 7.1, to find the completion of a normed space (X, | - 1), it is
enough to find an isometric embedding f of (X, || -||1) into a Banach space (Y, || - ||2)
such that f(X) is dense in Y. It should be stated that "isometric embedding" is
typically defined differently in the field of functional analysis. We will discuss this

more later.

Definition 8.4.1. Let (X, ||-||) be a normed space and define a function j : X — X**
by
Jj(z)(f) = f(x), forall fe X" and z € X.

The map j is referred to as the canonical embedding of X into its bidual.

The above definition takes a few moments to make sense. The map j maps elements
of X to elements of X**. Thus, for z € X, we have that j(z) € X** and X** is
the set of all bounded linear functionals from X* to K. Thus, j(z) : X* — K. So,
j(x) must map elements of X* to elements of K. Elements of X* are bounded linear
functionals of the form f: X — K. Hence, j(z) must map objects like f to elements
of K. The most obvious way to do this is to define j(z)(f) = f(z), which is precisely
what the map j does.

Theorem 8.4.2. Let (X, |- ||) be a normed vector space and let j : X — X** be the

canonical embedding of X into its bidual. Then j is an isometric embedding.

Proof. Although j is called an "embedding" we have not actually shown that it is
injective. To this end, let z1, 29 € X and suppose j(z1) = j(z2). Then j(x1)(f) =
J(x2)(f) for all f € X*. Thatis, f(x1) = f(xz) for all f € X*. By Exercise 8.3.3, we
know that X* separates points of X so this can only be the case if 1 = x5. Hence,

7 is injective.
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To show j is an isometry, we want to show that ||j(z)|| = ||z| for all x € X. Let
x € X. For f € X* such that || f|| <1, we have that

@) (N = 1f @] < [zl < fl]]-

Hence, ||z|| is an upper bound for {|j(x)(f)|: f € X* and || f|| < 1} and so ||j(z)|| <
|z||. By Exercise 8.3.3, there exists f € X* such that ||f|| < 1 and f(x) = ||z
Then, |j(z)(f)] = [f(2)] = llz]l. Thus, |[z[| € {[7(z)(f)]: f € X" and [|f[} < 1} and
so ||lz|| < ||7(x)||. Hence, ||j(z)|| = ||z|| and so j is an isometry. Therefore, j is an
isometric embedding of X into X™**. 0

Since j is an isometric embedding, X is isometric to j(X). Thus, the completion
of X, which we denote by )?, is given by X = m, since m is a closed subset
of a complete metric space. It should be mentioned though, that the normed space
(X, || - I|) is not just a topological space but an algebraic space as well. We can’t
simply identify the normed space X with j(X) because they are isometric (which
relies soley on the metric space structure) without also checking that they are alge-
braically equivalent as well. Fortunately, j is also a linear operator, that is, a vector
space homomorphism (checking this fact is a following exercise). So it preserves
the algebraic structure as well. Thus, for all intents and purposes, X and j(X) are
the same normed vector space. For this reason, "isometric embedding" is typically
defined differently in a functional analysis textbook as we also want the isometric

embedding to be a linear operator to preserve the operations.

Exercise 8.4.3. Let (X,|| - ||) be a normed space and let j : X — X** be the

canonical embedding of X into its bidual. Prove that j is a linear operator.

8.5 The Weak and Weak* Topologies

We are now able to discuss other types of topologies on normed vector spaces.
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Definition 8.5.1. Let (X, || - ||) be a normed vector space. The weak topology
on X is the weak topology generated by the set of functions X*. That is, the
weak topology is the weakest topology on X which makes all the elements of X*
continuous. Further, the weak* topology on X* is the weak topology generated by
the set of functions j(X). That is, it is the weakest topology on X* which makes all

the elements of j(X) continuous.

Note that we can only define the weak topology on X but we can define the weak
topology and the weak* topology on X*. In general, j(X) # X**, thus the weak
topology on X* is not the same thing as the weak™ topology on X*. Obviously, since
J(X) € X**, we have that the weak* topology is weaker than the weak topology on
X*. When we have a normed space X such that j(X) = X**, we call it reflexive.

Notice that the weak™ topology on X* is precisely the topology of pointwise conver-
gence. That is, a net (fy)rea converges to some f € X* if and only if j(z)(f\) —
J(@)(f), for all x € X, which is if and only if fi(x) — f(z) for all x € X. Thus, a

motivation for defining the weak* topology on X* is made clear.

In general, normed vector spaces endowed with the weak topology or weak* topology
are not first countable. Thus, we have to use nets rather than sequences to check
properties like openness, closedness, and compactness of sets or continuity of func-
tions. If you recall, an important property for the generating set of functions for a
weak topology is that it separates points. We check that this is the case for the weak

and weak* topologies in the next exercise.
Exercise 8.5.2. Let (X, || -||) be a normed vector space. We have already seen that
X* separates points of X. Prove that j(X) separates points of X*.

Thus, the weak topology and the weak* topology are always Hausdorff.

It turns out that when investigating topological vector spaces, the situation is very

different if we are dealing with a finite-dimensional vector space versus an infinite-
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dimensional vector space. So different, in fact, that the two situations fall under
the umbrella of different fields of mathematics, with the study of finite-dimensional
vector spaces belonging to Linear Algebra, whereas, the study of infinite-dimensional
vector spaces is the focus of Functional Analysis. In the next section, we will focus our
attention on finite-dimensional vector spaces. Afterwards, we will focus on infinite-
dimensional vector spaces. Once these sections are complete, the reader should see

why these two topics are markedly different.

8.6 Finite-Dimensional Vector Spaces

We should already be aware of the fact, from Linear Algebra, that if X is a finite-
dimensional real vector space, with dimension n, then X is algebraically equivalent to
R". Further, if X is an n-dimensional complex vector space, then X is algebraically

equivalent to C". Indeed, given an n-dimensional vector space X with basis B =

{e1,€e9,...,e,}, every element x of X can be uniquely expressed in the form z =
ajer + ages + -+ 4+ ape,, for some ai,an,...,a, € K. Thus, we can make the
association ) )

a1

Qi

T = (€] + Qg+ + + (pCy

O

which respects the algebraic operations. Thus, if we are only interested in the alge-
braic properties of finite-dimensional vector spaces, then there is no need to study

anything other than R”™ for real vector spaces and C" for complex vector spaces.

What if, though, we want to incorporate topological properties as well? Are there
different vector topologies that we can impose on R" and C" which will give us

different topological properties? In this section, we will answer these questions.
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First, recall that when we say two metrics defined on the same set are equivalent, we
mean that the topologies the two metrics generate are the same. Here, when we say
two norms defined on the same set are equivalent, we mean the topologies the two
norms generate are equivalent. We also saw that if d; and dy are two metrics defined
on a set X and there exists k, K >) such that

kdl(l’l,l’Q) S dg(l’l,l'Q) S Kdl(l’l,l‘g), for all T1,T9 € X

then d; and dy are equivalent. If our metrics are given by the norms || - [|; and || - [|2

then the above string of inequalities is equivalent to
Ellz]|1 < ||zl < K||x||1, forall x € X.

Thus, two norms ||c||; and || || defined on the same set X are equivalent (or generate

the same topology) if we can find k, K > 0 such that
Ellz|y < |z||2 < K||z]l;, forall z € X.
We are now ready to look at the first theorem of this section.

Theorem 8.6.1. Let || - |1 and || - |2 be norms defined on the vector space K™ over
the field K, for some n € Z,. Then there exists k, K > 0 such that

kllzly < llelle < Kllzlly,  for all z € K"

Thus the norms || - |1 and || - ||2 are equivalent.

Proof. Let 5 = {by,ba,...,b,} be a basis for K”. Define | -||3: K" — R by ||z||3 =
Y iy lak], where & = agby + aby + - - - 4+ by, Since representations of vectors as
linear combinations of basis elements are unique, we have that || - ||3 is well-defined.

It is easy to check that || - ||3 is a norm on K".
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Now, consider the norm || - ||; as a function || - ||; : (K™, || - ||3) — [0,00). Let M =

max{||bg||1 : k=1,2,...,n}. Then, for x € K", where x = a1by + agbs + - - - + a,, by,

we have
n n
el = {| D anbe|| < MY |aw| = Malls.
k=1 k=1
Thus, || - |1 : (K™, || - ||s) — [0, 00) is a continuous function.

Next, we would like to show that S = {x € K"|||z||3 = 1} is a compact subset of
(K™ || - ||3). Since (K™, || - ||3) is a metric space, by Theorem ?7, it is enough to show
S is sequentially compact in (K™, || - [|3). Let ()52, be a sequence in (K" | - ||3).
We have to show there exists a subsequence which coinverges to an element of S.

Let T, = ay1by + agobs + - - - + ayn by, for all k € Z.. Since

n
o < o] = 1Tells = 1

Jj=1

we have that (ax1)52, is a sequence in [—1,1]. Since the set [—1, 1] is compact, there
exists a subsequence (ay;1)52; such that ag,1 — 71, for some v, € [~1,1]. Similarly,
we can find a subsequence of (ay;2)52; which converges to some v, € [-1,1], and
continue in this fashion up to n so that we then have a subsequence (Ty, )2, of
(T)52q, where Ty, = ag,1b1 + g obs + -+ + Qgnby, such that Ty, M T, where
T = y1b1 + Y2bs + - -+ + Vb, And, since S is closed with respect to || - ||3, we have

that T € S. Thus, S is compact with respect to || - ||s.

Now, we have that ||-||; : (K", [|-]|3) — [0, 00) is continuous and S is a compact subset
of (K", || -|l3). Thus, ||-||1(S) is a compact subset of [0,00). Hence, by The Extreme
Value Theorem (Theorem ?7?), || - ||; attains a minimum ¢; and maximum ¢, on S.
Note that ¢; # 0 since 0 ¢ S. Thus, we have ¢, c; > 0 such that ¢; < ||z]|; < o, for
all z € S.
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Next, let x € K®. Then - € S so

llzlls

el ] <o
(EIEYI
and so
crflzlls < lxfly < cofl]ls.
Since || - ||; is a generic norm on X, as is || - |2, we also have shown that there exists

dyi,dy > 0 such that
dillz|ls < ||zll2lld2[[2]l5-

Then,

C
]l < eallzlls < 2|zl

d;
and

C1
]l > cilz|ls > d—HfL’Hz-
2

Hence, there exists k£, K > 0 such that
kllzlls < flzlly < K]

and the proof is complete. O

Thus, any norm we define on R” will produce the same topology as the Euclidean
norm which, in turn, produces the usual topology. Similarly, any norm we define
on C" will produce the usual topology on C". Thus, for all intents and purposes,
the only n-dimensional real normed vector space is the Banach space R™ with the
Euclidean norm and the only n-dimensional complex normed vector space is the

Banach space C" with the Euclidean norm.

For general normed spaces (X, ||-]]1) and (Y ||-||2), we know that B(X,Y) C L(X,Y).

The next proposition tells us, that if X is finite-dimensional, then we actually have
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B(X,Y) = L(X,Y).

Proposition 8.6.2. Let (X, | - |1) and (Y,| - ||2) be normed spaces over the same
field K. If X is finite-dimensional, then B(X,Y) = L(X,Y).

Proof. Since X is finite-dimensional, there exists n € Z, and by, by, -+ ,b, € X such
that 8 = {b1,ba,...,b,} is a basis for X. Recall from the proof of Theorem 8.6.1, if
we define || - |[3: X — R by ||z|s = d>_,_, |ag|, where x = ayby + asbs + - -+ + by,
then || - ||3 is @ norm on X. Thus, from Theorem 8.6.1, there exists C' > 0 such that
|z]|s < C|z|; for all z € X.

Let T € L(X,Y). Now, let M = max{[|Tbi|»: k=1,2,...,n} and let € X such
that ||z|| < 1. Then, x = a1by + agbs + - -+ + anb,, for some a, as,...,a, € K.
Further,

|Tz|lo = || T (crby + azby + - - - + ayby) |2
= a1 Thy + agThy + -+ - + a, Thy |2
< aal[|Tb1][2 + ol | T2z + - - - + [ T00]|2
< M (laa] + |aa| + - + |an])
= M|zls
< MCllz|ly
< MC.

Thus, the set {||Tz||2: = € X, ||z|| < 1} is bounded above and so T' € B(X,Y). O

Recall that L(R",R™) = M,,x,(R). Since we now know L(R", R™) = B(R",R™), we

have that all matrices are automatically bounded, i.e., continuous.

Further, if X = R", then X* = B(R",R) = M, (R). From Linear Algebra, we know

that M., (R) is an n-dimensional vector space, thus X* with the operator norm is
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algebraically and topologically equivalent to R™. That is, X* = X. Consequently,

we also have that X is reflexive since this implies X™ = X.

Still, we defined the weak topology for general normed spaces X (the weak topology
generated by X*). What is the weak topology on R"™ or C"? The next theorem

answers this question.

Theorem 8.6.3. Lel 71 we the weak topology on K" and let 75 be the topology on K"

generated by the Fuclidean norm. Then 7 = Ty.

Proof. Let X = K". By definition, every element of X* is continuous with respect
to 9. Since 7p is the weakest topology which makes every element of X* continuous,

we have that 7 C 7.

For the other inclusion, consider the projection maps 7, : X — K, for k =1,2,...,n.
It is easy to check that each projection map is linear. By Proposition 8.6.2, we have
that m, € X*, foreach k = 1,2,...,n. Thus, by Exercise 77, if 73 is the weak topology
generated by the projections maps, then 73 C 7. The weak topology generated by
the projection maps is precisely the product topology on X. Further, for X = K",
we know the product topology equals the usual topology 5. Thus, 7, = 73 C 7y and

therefore 7 = 7. O

Thus, there is no need to consider the weak topology on a finite-dimensional vector
space as it still produces the usual topology. If X is finite-dimensional, we saw that
X = X*, thus, we could impose the weak® topology on X but, if Y = X* then
Y* = X* = X* so the above theorem tells us that the weak* topology on R" is
again going to be the usual topology.

In conclusion, for finite-dimensional vector spaces, the only meaningful vector topol-
ogy to consider is the usual topology. Further, all of our linear operators are matrices
which are automatically continuous, making any discussion about continuity of linear

functions unnecessary.
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While we almost exclusively use the Euclidean norm as the norm of choice for K”
(because it has additional geometric properties which are useful), this is not always
the case with the finite-dimensional vector space M, (K). While all of the norms
defined on M,,«,(K) generate the same topology, it is sometimes useful to use norms

different than the operator norm.

8.7 Infinite-Dimensional Vector Spaces

We saw in the last section that if the domain of a linear operator was finite-dimensional,
then the linear operator was automatically bounded. This is not the case, if the do-

main is an infinite-dimensional vector space as the next example illustrates.

Example 8.7.1. Let P([0,1]) be the vector space of polynomials defined on [0, 1]].
Since P([0,1]) is a subspace of C([0,1]), we can define the supremum norm || - ||«
on P([0,1]). Define D : P([0,1]) — P([0,1]) by D(p) = p/, where p' is the derivative
of p. Clearly, D is a linear operator but it is not bounded. To see this, consider
pn(x) = 2™, for all n € Zy. Then, ||p,||loc = 1 but ||D(pn)]lcc = n. Thus, for any
M > 0, we can find a p, € P([0,1]) such that || D(pn)||cc = M||pn||cc. Hence, D is

not bounded (and so not continuous).

The above example shows that, in general, linear operators are not automatically
bounded. Next, we will look at some important theorems about linear operators on

general normed vector spaces.

It is easy to verify (exercise below) that if (X, ||-||;) and (Y, || -||2) are normed spaces

and T € B(X,Y) is an open function, then T is surjective.

Exercise 8.7.2. Let (X,||-||1) and (Y, || -]|2) be normed spaces and let T € B(X,Y").
If T is an open map, then T is surjective. Hint: We want to prove T(X) =Y.
Obviously, T(X) C Y. For the other inclusion, ince T is open, T(X) is open.
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Hence, there exists € > 0 such that By (0,€¢) C T(X). Now show, for anyy €Y, that
yeT(X).

The next theorem proves the converse of the above exercise in the case when (X, ||-||1)

and (Y, - ||2) are Banach spaces.

Theorem 8.7.3. (Open Mapping Theorem) Let (X, | - |1) and (Y| - ||2) be
Banach spaces and let T € B(X,Y). If T is surjective, then T is an open function.

Proof. Let Bz(zo,7) = {x € Z|||x — xo|| < r}, where Z is either X or Y.
Claim: There exists € > 0 such that By (0,¢) C T'(Bx(0,1)).

Since T is surjective, we have that Y = U T(Bx(0,n)). Since Y is a complete
metric space, by The Baire Category Theorem (Theorem ?7?) there must exist n € Z
such that T'(Bx(0,n)) is not nowhere dense. This is, (T(BX(O,TL))> # . Since

T(Bx(0,n)) = nT(B,(0,1)), we then have that (T(BX(O, 1)))0 £ . Hence, there
exists y € Y and s > 0 such that By(y,s) C T(Bx(0,1)). Note that we also have
By (—y,s) CT(Bx(0,1)). Thus, if yo € Y and ||yo|| < s, then,

Yo=y+ (yo —y) € 2T (Bx(0,1)) C T(Bx(0,2))

and so By(0,s) € T(Bx(0,2)). Hence, we have that, for ¢ = 7, the inclusion
By (0,t) CT(Bx(0,1)) and so, for € > 0, we have By (0, et) C T(Bx(0,¢)).

Thus, we have shown the following property:

Property: For all e > 0 and all 6 > 0, if y € Y and |y|]2 < et, then there exists
x € X such that ||z]|; < eand ||y — Tz < 0.

Let yo € By(0,t). Then, using the above property for e = 1, § = %, and y = yp, we
find zy € X such that ||zo|l; <1 and [jyo — Txoll2 < 5.
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Now, use the property again but with ¢ = %, 0 = 2%, and y = yo — T'ro (where we

then label y; = yo — T'z) to find z; € X such that ||z1]|; < % and ||y; — Tx1]]2 < 2%

Continue in this fashion to construct a sequence (z,,)5°, in X and a sequence (y,)>>

in Y such that ||z,|; < 2%, lynll2 < 2%, and y, = yp_1 — Tx,_1, foralln € Z,.

It is an exercise given afterward to show that since >~ |lz,][1 < oo and X is a

complete metric space, that Y>>, =z, for some x € X. Also, note that for n € Z,

Yn = Yn—1 — Tﬂjn—l
= Yn—2 — Txn—? - Txn—l

Thus, since T' is continuous,

0= lim y, = lim (yo—T (;m)> =yo— Tz

and so Tz = yo. Further, since ||>°,_ |, < 2, for all n € Nand >} jxp — z,
we have that ||lz|[; < 3. Thus, By(0,t) C T(Bx(0,3)) and so, for e = £, we have
By (0,¢) C T(B,(0,1)). This completes the proof of the claim.

We now want to show T'(Bx(0,1)) is open. Let y € T(Bx(0,1)). Then y = Tz, for
some x € X where ||z]j; < 1. Pick r € R such that 0 < r <1 — ||z||y. Then,

By (y,re) =y + By(0,7¢) Cy+ T(Bx(0,r)) = T(Bx(z,r)) C T(Bx(0,1))

and so T'(Bx(0,1)) is open.

Now, for any basic open set Bx (z,7) in X, we have T'(Bx (zo,7)) = Tzo+rT(Bx(0,1))
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which is open. Hence, T is an open function. O

Exercise 8.7.4. Let (X, | -||) be a Banach space and let (z,), be a sequence in
X. Prove that if >>>°  ||z,|| < oo, then there exists z € X such that > 7z, = .
Hint: Recall your definitions from Calculus. When we say Y >~ x, = x, we mean
the sequence of partial sums (ZZ:1 T,)72, converges to x. Since Y - ||lz,| < oo,
we know its sequence of partial sums is Cauchy. Use this to show the sequence of
partial sums (Zﬁzl xn)e, is Cauchy. Then use the fact that X is a complete metric

space.

One consequence of The Open Mapping Theorem is given in the following corollary.

Corollary 8.7.5. Let (X, ||-]|1) and (Y, ||-||2) be Banach spaces and let T € B(X,Y).
If T is bijective, then T is invertible and T~ € B(Y, X).

Proof. Obviously, T~! is well-defined, since T is bijective. Since T is surjective, we
have from The Open Mapping Theorem, that 7 is open. Thus, 7! is continuous.
Since linear operators are continuous if and only if they are bounded, we have that
T e B(Y, X). m

As with most functions, linear operators included, we are often interested in knowing
when they are invertible. We already know that if a function is bijective then it has
an inverse. Thus, given a bijective T' € B(X,Y), we already know that 7! exists. If
X and Y are finite-dimensional, then we automatically obtain that 7! is bounded,
since all linear operators in this case are bounded. What the above proposition tells
us is that, in the case when X and Y are infinite-dimensional, there is still no need
to check if T! € B(Y, X) as The Open Mapping Theorem guarantees that this is

the case.

Another important theorem about the continuity of a linear operator has to do with

the graph of a linear operator. We will start with a definition.
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Definition 8.7.6. Let X and Y be vector spaces and let 7' € L(X,Y’). The graph
of T, denoted by G(T), is a subset of X x Y and is given by

G(T)=A{(z,Tx)|z € X}.

Exercise 8.7.7. Let (X, | - |1) and (Y,| - ||2) be normed spaces. Prove that if
T € B(X,Y), then G(T) is closed.

The next theorem proves the converse of the above exercise in the case when both

normed spaces are complete.

Theorem 8.7.8. (Closed Graph Theorem) Let (X, ||-||1) and (Y, ]|-]|2) be Banach
spaces and let T € L(X,Y). If T has a closed graph (that is, G(T) is a closed subset
of X XY with the product topology), then T € B(X,Y).

Proof. Define ||-|3: X xY — R by [[(z,y)|lz = |||l + ||y]|2. It is easy to check that
| - || is a norm on X x Y. Further, a sequence ((x,,y,))5>; in X x Y converges to
some (z,y) € X x Y with respect to || - [|3 if and only if 2, — 2 and y,, — y. This,
in turn, is true, if and only if m((z,, yn)) — m((z,y)) and To((Tn, yn)) = m2((z,y))
which is if and only if (x,,y,) — (x,y) with respect to the product topology. Thus,
the norm || - ||3 induces the product topology on X x Y. Since G(T) is closed, we
have that (G(T), || - ||3) is a Banach space. The maps m; and 7, are continuous since
X xY has the product topology, thus 7 |g(r) is continuous by Theorem ??. Further,
T1|c(r) is bijective and so, by Corollary 8.7.5, we have that (m|¢(r)) ™" is continuous.

Thus, T' = my o (m1]gr)) " is continuous by Exercise 7. O

At first glance, the usefulness of The Closed Graph Theorem might be missed. Sup-
pose T' € L(X,Y) and we would like to prove that T is continuous. The standard
approach is to let (x,)22; be a sequence in X such that z, — x, for some x € X,

and then we are tasked with showing that T'x,, — T'z.
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The Closed Graph Theorem tells us that to prove T is continuous, it is enough
to prove G(T) is closed. To do this, we let ((x,,Tz,)):2, be a sequence in G(T)
such that (z,,Tz,) — (z,y), for some (x,y) € X x Y, and we want to show that
(x,y) € G(T). To do this, we simply have to show Tz = y. Note though that since
(xn, Tx,) — (x,y), we have that x,, - x and Tz, — v.

Hence, in our first strategy we end up with a sequence (z,)5%, such that x, — z, for
some z € X, and we have to show that (T'z,)2%, converges to something, and that

the something is T'z.

In our second strategy, provided to us by The Closed Graph Theorem, we end up
with a sequence (z,)5, such that x, — z, for some x € X and we further have
that Tz, — y, for some y € Y, and we have to show Tx = y. Thus, with the
second strategy, one of our tasks in the first strategy is done for us. We already
know (T'x,)22 ; converges to something. We just have to show that the something is
Tzx.

If the reader recalls the proof of Theorem 8.6.1, which showed that any two norms
defined on a finite-dimensional vector space are equivalent, it relied heavily on the fact
that the closed unit sphere, S, was compact. If the closed unit sphere of an infinite-
dimensional vector space is also compact, a variation of the proof given in Theorem
8.6.1 might show that two norms defined on the same infinite-dimensional vector
space X must be equivalent, especially if we allow ourselves to add a few assumptions
about X. One of the surprising things about infinite-dimensional Banach spaces is

that, in fact, the closed unit sphere is never compact, as the next theorem shows.

Theorem 8.7.9. If (X, ||-]|) is a Banach space. The unit sphere S = {x € X|||z| =

1} is compact with respect to the norm if and only if X is finite-dimensional.

Proof. For the backwards direction, suppose X is finite-dimensional. Since S is

closed and bounded, by The Heine-Borel Theorem, S is compact.



52 CHAPTER 8. APPLICATIONS TO VECTOR SPACES

For the forward direction, suppose S is compact. For any x € X we have, by Exercise
8.3.3, that there exists f, € X* such that f.(x) = ||z|. Thus, for x # 0, we have
that z € X \ f71({0}). Since {0} is closed and f, is continuous, the set f-1({0}) is
closed and so X \ f,1({0}) is open. Thus,

sc |J (x\s1dop)

fexx

is an open cover of S. Since S is compact, there exists a finite subcover. That is,

there exists n € Z, and fi, fo,..., fn € X* such that

n

scJ @\ fdon). (8.1)

Define T': X — K" by T'(z) = (fi1(x), fa(x),..., fu(x)). The map T is clearly linear.
Further, if 21, 2o € X and T'(x1) = T'(z2) then fi(x1) = fi(zo) forall k =1,2,... n.
If 1 # x9, then 2=22- € S and

lz1—z2]|

f(M) —0, forallk=1,2,....n.

|21 — 22|

But, by Equation (8.1), we have that there exists k = 1,2,...,n such that 2=22. €

[lz1—z2|

X\ £, 1({0}), which implies that fj,(£=2-) = 0. This is a contradiction. Hence, we

llz1—2||

have that x1 = x5 and so T is injective. Therefore, since T': X — K" is linear and

injective, the dimension of X must be at most n and so X is finite-dimensional. [

Exercise 8.7.10. Let (X, || - ||) be an infinite dimensional Banach space.

(i) We know X* is a Banach space. Prove that it is also infinite-dimensional.
(ii) Prove that S ={f € X*: ||f| =1} is closed.

(iii) Prove that the closed unit ball Bx-(0,1) in X* is not compact. Hint: If the

closed unit ball were compact, what would that imply about the closed set S?
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Note that the above theorem does not imply that given an infinite-dimensional vector
space, two different norms can’t induce the same topology. It is simply saying, among
other things, that our proof strategy to show norms must be equivalent in finite
dimensions won’t work here. The following example shows that we can, in fact, have

two norms defined on the same vector space which do not produce the same topology.

Example 8.7.11. Consider the vector space C([0,1]). Define || f|lw = sup{|f(z)] :
x € [0,1]} which is well-defined since a continuous function f : [0, 1] — R is bounded.
Also, define || f|l, = fol | f(z)|dz which is well-defined since continuous functions are
Riemann integrable. Consider f, : [0, 1] — R defined by f,(z) = 2™. Then f, M 0,

where 0 is the constant 0 function, since

1
n—+1

— 0.

1
=0l = [ ando =
0

But, (fn)r, does not converge to 0 with respect to || - ||« since || f, — 0]l = 1 for all
n € Z,. Thus, by Proposition 77, the topology generated by || - || is not contained

in the topology generated by ||-||; and so the two norms generate different topologies.

While in finite dimensions, any norm we define will produce the usual topology,
thus ensuring the exact same topological properties. For infinite-dimensional vector
spaces, different norms will potentially produce different topologies, thus giving us
different topological properties. So, for example, a subset A of an infinite-dimensional
vector space X could be closed or not closed, compact or not compact, etc. depending

on the norm that we define on X.

For finite-dimensional vector spaces, we saw that the weak and weak* topologies were
also equal to the usual topology on R™ or C". In general, for infinite-dimensional
normed spaces, the weak topology and (when applicable) the weak* topology will

produce different vector topologies than the one induced by the norm.

In summary, given a finite-dimensional vector space, it does not matter what norm
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we define on the space or whether we instead impose the weak or weak* topology on
the space, we will always end up with the usual topology on R™ or C". We will also

have that all of our linear operators are matrices which are automatically continuous.

For infinite-dimensional vector spaces, different norms will potentially produce dif-
ferent topologies giving us a seemingly endless list of possible normed vector spaces
to study. Further, we can impose the weak topology and (when applicable) weak*
topology on these same normed spaces to provide us with an entirely different topo-
logical space to consider. To illustrate the richness of topological vector spaces and
usefulness of considering different topologies on the same vector space, consider the
dual X* of an infinite-dimensional normed space X. While we saw in Exercise 8.7.10
that the closed unit ball in X*, equipped with the operator norm, is not compact.

The closed unit ball in X™ is compact, if we equip X* with the weak* topology.

Theorem 8.7.12. (Alaoglu’s Theorem) Let (X, || - ||) be a normed vector space
over the field K. Then the closed unit ball of X* is compact with respect to the weak*
topology.

Proof. Consider the set Z = [] .y Bx(0, ||z||) with the product topology. By Ty-
chonoff’s Theorem (Theorem ?7), the set Z is compact. Note that for any f € Z,
we have that |f(z)| < ||z||, for all z € X. The elements of Z are not necessarily
linear though. Thus, the elements of Bx-(0,1) are precisely the elements of Z which
are linear. Also, we saw in Chapter 4 that the product topology is precisely the
topology of pointwise convergence and we know the weak® topology on X* is also
the topology of pointwise convergence. Thus, the weak* topology on Bx-(0,1), as a
subspace of Z, is precisely the topology of pointwise convergence. Thus, it suffices
to show that Bx-(0,1) is closed with respect to pointwise convergence. Then, by
Exercise ??, we have that Bx-(0,1) is compact. Let (fy)aca be a net in Bx«(0,1)
such that f\ SN f, where f € X*. We know that f € Z, since Z is compact. Thus,

it suffices to show that f is linear. Let z1, x5 € X and let a € K. Since f) S f, we
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have that fi(z1) = f(z1), fa(z2) = f(22), and fa(z1 + azs) = f(z1 + o). Thus,

[z + axy) = )\11_{20 Ia(r + axs)
= /\113010 (fa(z1) + afa(z2))
= lim fa(z2) +a lim fy(z2)
= f(z1) + af ().

Thus, f is linear and so Bx-(0, 1) is a compact set with respect to the weak* topology.
]
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