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16 CHAPTER 8. APPLICATIONS TO VECTOR SPACES

In this chapter, we will brie�y recall some basic facts about vector spaces, investigate

various useful ways to de�ne topologies on vector spaces, discuss the main di�erences

between �nite-dimensional vector spaces and in�nite-dimensional vector spaces, and

see some of the foundational theorems for investigating vector spaces with topologies.

The title of this chapter is "Applications to Vector Spaces" as we are going to be

introducing an algebraic structure to our topological spaces. Once we do this, we are

venturing away from a purely topological study and towards areas of mathematics

such as Linear Algebra and Functional Analysis. Nevertheless, this is a course in

topology, so we will mainly focus on the topological properties of these spaces.

The purpose of this chapter is to illustrate the necessity for a thorough understanding

of topology in other areas of mathematics, in this case, a study of vector spaces. In

this chapter, we will see that many of our important topological theorems, such as

The Baire Category Theorem and Tychono�'s Theorem, are essential to answer some

of our most fundamental questions about vector spaces. This chapter is by no means

a thorough investigation into vector spaces endowed with a topology as this is an

incredibly large �eld of study.

8.1 Vector Spaces

Most, if not all, of the material in this section should be familiar to the reader who

has taken an introductory Linear Algebra course.

De�nition 8.1.1. A vector space over a �eld K (the set K is either R or C) is a
set X, a mapping + : X ×X → X called "addition" and a mapping · : K×X → X

called "scalar multiplication", where we denote +(x, y) = x + y and ·(α, x) = αx,

such that

(i) there exists 0 ∈ X such that 0 + x = x, for all x ∈ X,
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(ii) for all x, y ∈ X, we have x+ y = y + x,

(iii) for all x, y, z ∈ X, we have x+ (y + z) = (x+ y) + z,

(iv) for all x ∈ X, there exists −x ∈ X such that x+ (−x) = 0,

(v) for all α, β ∈ K and x ∈ X, we have α(βx) = (αβ)x,

(vi) for all α, β ∈ K and x ∈ X, we have (α + β)x = αx+ βx,

(vii) for all α ∈ K and x, y ∈ X, we have α(x+ y) = αx+ αy, and

(viii) 1x = x, for all x ∈ X.

Some immediate consequences of the above properties are that 0x = 0 and (−1)x =

−x. Also, the general convention is that x− y is de�ned to be x+ (−y).

If X is a vector space over the �eld R, then we call X a real vector space whereas,

if X is a vector space over the �eld C, then we call X a complex vector space. If

we make a statement about a vector space X over the �eld K, then the statement is

true for K = R and K = C.

Example 8.1.2. (i) The real vector space that we are most familiar with from

Linear Algebra would be Rn, for some n ∈ Z+, where addition and scalar

multiplication are de�ned component-wise. That is,

x1

x2

·
·
xn


+



y1

y2

·
·
yn


=



x1 + y1

x2 + y2

·
·

xn + yn


and α



x1

x2

·
·
xn


=



αx1

αx2

·
·

αxn


.

(ii) The most familiar complex vector space is Cn, for some n ∈ Z+, where addition

and scalar multiplication are de�ne component-wise.
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(iii) The set RR forms a real vector space where we de�ne addition by (f + g)(x) =

f(x) + g(x) and scalar multiplication by (αf)(x) = αf(x).

(iv) The set of all real-valued sequences Rℵ0 is a real vector space where (xn)
∞
n=1 +

(yn)
∞
n=1 = (xn + yn)

∞
n=1 and α(xn)

∞
n=1 = (αxn)

∞
n=1.

The observant reader has perhaps noticed that all of the examples above are par-

ticular cases of a more general example. Given our �eld K, which is either R or C,
the product space KI is a vector space where we de�ne the addition of two elements

f : I → K and g : I → K by (f + g)(i) = f(i) + g(i) and scalar multiplication by

(αf)(i) = αf(i). In example (ii), K = C and I = Zn, while in examples (i), (iii),

and (iv), K = R, while I = Zn in (i), I = R in (iii), and I = Z+ in (iv).

De�nition 8.1.3. Let X be a vector space and let V be a subset of X. We say V

is a subspace of X, if

(i) for all x, y ∈ V , we have that x+ y ∈ V , and

(ii) for all α ∈ K and x ∈ V , we have that αx ∈ V .

Note that if X is a vector space and V is a subspace of X then V is a vector space

itself. It inherits the commutative, distributive, and associative properties from X

while property (ii) implies that if x ∈ V , then −x = (−1)x ∈ V and so property (i)

implies 0 = x+ (−x) ∈ V .

Example 8.1.4. (i) Recall the sets c00, c0, and c from Chapter 1. The set c00 is

the set of all real-valued sequences with �nitely many nonzero coordinates, the

set c0 is the set of all real-valued sequences which converge to zero, and the

set c is the set of all real-valued sequence which converge. All three sets are

examples of subspaces of Rℵ0 . Further, we have that c00 ⊆ c0 ⊆ c so c00 and c0

are also subspaces of c while c00 is a subspace of c0.
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(ii) From Corollary ?? we know that if f, g ∈ C(R) (recall that C(R) is the set of
all continuous functions f : R → R) then f + g ∈ C(R) and αf ∈ C(R) thus,
C(R) is a subspace of RR.

(iii) Let B(R) be the set of all bounded functions f : R → R. Then B(R) is a

subspace of RR.

(iv) Recall that C([a, b]) is the set of all continuous functions f : [a, b]→ R and let

B([a, b]) be the set of all bounded functions f : [a, b]→ R. Then C([a, b]) and

B([a, b]) are subspaces of R[a,b]. Let f ∈ C([a, b]). Since [a, b] is compact and f

is continuous, the set f([a, b]) is compact. Then, by The Heine-Borel Theorem,

f([a, b]) is bounded and so f ∈ B([a, b]). Thus, C([a, b]) is a subspace of

B([a, b]).

(v) Let P ([a, b]) denote the set of all polynomials from [a, b] into R. Then P ([a, b])

is a subspace of C([a, b]). Further, if P (R) is the set of all polynomials from

R into R, then P (R) is a subspace of C(R). Further, if Pn([a, b]) denotes the

set of all polynomials of degree less than or equal to n de�ned on [a, b], then

Pn([a, b]) is a subspace of P ([a, b]) while Pn(R) (the set of all polynomials of

degree less than or equal to n de�ned on R), then Pn(R) is a subspace of P (R).

De�nition 8.1.5. Let X be a vector space over the �eld K and let B ⊆ X. We say

the set B is linearly independent if for every n ∈ Z+ and every x1, x2, . . . , xn ∈ B

the statement

α1x1 + α2x2 + · · ·+ αnxn = 0, for some α1, α2, . . . , αn ∈ K

implies

α1 = α2 = · · · = αn = 0.

De�nition 8.1.6. If X is a vector space and x1, x2, . . . , xn ∈ X, for some n ∈ Z+,

then a linear combination of x1, x2, . . . , xn is a vector of the form α1x1 + α2x2 +

· · ·+ αnxn for some α1, α2, . . . , αn ∈ K.
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De�nition 8.1.7. If X is a vector space and V is a subset of X, then the linear

subspace generated by V or the span of V is the set of all linear combinations

of elements of V and is denoted by Span(V ).

Exercise 8.1.8. LetX be a vector space over K and let V ⊆ X. Prove that Span(V )

is a subspace of X.

De�nition 8.1.9. A subset B of a vector space X is called a Hamel basis of X if

B is linearly independent and Span(B) = X.

Example 8.1.10. (i) Consider the vector space Rn, for some n ∈ Z+ and let

B = {e1, e2, . . . , en}, where

e1 =



1

0

0

·
·
0


, e2 =



0

1

0

·
·
0


, . . . , en =



0

0

0

·
·
1


.

Then B is a Hamel basis for Rn.

(ii) Consider the vector space P (R) and the set B = {1, x, x2, x3, . . . }. Then B is

a Hamel basis for P (R).

(iii) Consider the vector space Rℵ0 . Then Rℵ0 does not have a Hamel basis nor does

its subspaces c0 or c. If we consider the subspace c00, then B = {e1, e2, e3, . . . }
is a Hamel basis for c00 where e1 = (1, 0, 0, 0, . . . ), e2 = (0, 1, 0, 0, . . . ), e3 =

(0, 0, 1, 0, . . . ), etc.

(iv) The vector spaces C([a, b]), B([a, b]), C(R), B(R), and RR do not have Hamel

bases.
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It should be stressed that linear combinations of vectors are de�ned to be �nite sums

of scalar multiples of vectors. Thus, for a set B to span a vector space X, every

element of X needs to be expressable as a �nite sum of scalar multiples of elements

of B. The reader might wonder why we don't allow for in�nite sums but, remember,

an in�nite sum is de�ned as the limit of its sequence of partial sums. We cannot

discuss limits of sequences without any topological structure. If we want to discuss a

di�erent kind of basis (no longer a Hamel basis) which allows for in�nite sums, then

we would need to introduce a topology to our vector space.

De�nition 8.1.11. Let X be a vector space and suppose B is a Hamel basis for X.

If |B| = n, for some n ∈ Z+, then we say the vector space X is �nite dimensional

and say X is an n-dimensional vector space. We write dim(X) = n. Otherwise, we

say the vector space X is in�nite dimensional.

The next exercise checks that our above de�nition makes sense.

Exercise 8.1.12. Let X be a �nite dimensional vector space and suppose B and C

are Hamel bases for X. Prove |B| = |C|.

De�nition 8.1.13. Let X and Y be vector spaces over the same �eld K. We say a

function T : X → Y is a linear operator (or linear transformation) if

(i) T (x+ y) = T (x) + T (y) for all x, y ∈ X, and

(ii) T (αx) = αT (x) for all α ∈ K and all x ∈ X.

Note that if T is a linear operator, then T (0) = 0 from the properties above. Also,for

a linear operator T , we often write T (x) = Tx. If X and Y are vector spaces, then

we denote the set of all linear operators T : X → Y by L(X, Y ). If X = Y then we

write L(X) rather than L(X,X). In Linear Algebra, we learn that when X = Rn

and Y = Rm, then L(X, Y ) is precisely the set of all m×n matrices with real-valued

entries. We will denote the set of all m × n matrices with real-valued entries by
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Mm×n(R). Thus, we have L(Rn,Rm) = Mm×n(R). We also learn in linear algebra

that Mm×n(R) is a vector space with matrix addition and scalar multiplication. The

same is true for L(X, Y ) for any vector spaces X and Y as the reader is asked to

prove in the next exercise.

Exercise 8.1.14. Let X and Y be vector spaces over the same �eld K. Prove

L(X, Y ) is a vector space over the �eld K where we de�ne (L +M)(x) = Lx +Mx

for all L,M ∈ L(X, Y ) and x ∈ X and (αL)(x) = αLx for all α ∈ K and x ∈ X.

Note that L(X, Y ) ⊆ Y X where we de�ned vector addition and scalar multiplication

component-wise so it su�ces to prove that L(X, Y ) is a subspace of Y X .

For those who have taken an abstract algebra course, a homomorphism between two

algebraic structures of the same type (groups, rings, vector spaces, etc.) is a function

from one structure to the other which respects the operations. Thus, the set of all

linear operators L(X, Y ) is precisely the set of all vector space homomorphisms from

X to Y . More speci�cally, Mm×n(R) is the set of all vector space homomorphisms

from Rn to Rm.

An important property for linear operators is whether or not they are continuous.

Currently, we have no way to discuss the continuity of linear operators though be-

cause, once again, continuity requires a topological structure. This leads us to the

topic of the next section.

8.2 Vector Topologies

De�nition 8.2.1. Let X be a vector space and let τ be a topology on X such that

the addition map + : (X × X, σ) → (X, τ) is continuous, where σ is the product

topology on X × X, and the scalar multiplication map · : (K × X, γ) → (X, τ)

is continuous, where γ is the product topology on K × X, where K has the usual
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topology. Then we say τ is a vector topology and refer to (X, τ) as a topological

vector space or linear topological space.

Thus, a topological vector space is a vector space endowed with a topology which

makes the operations continuous. That is, given nets (xλ)λ∈Λ, (yλ)λ∈Λ in X and a

net (αλ)λ∈Λ in K we have that, if xλ → x, yλ → y, and αλ → α, for some x, y ∈ X

and α ∈ K, then (xλ + yλ)→ (x+ y) and αλxλ → αx.

The most prevalent types of topologies given to vector spaces are weak topologies

generated by sets of functions and topologies generated by norms. We will start by

looking at topologies generated by norms.

De�nition 8.2.2. Let X be a vector space over the �eld K. A norm on X is a map

∥ · ∥ : X → R, where we denote ∥ · ∥(x) by ∥x∥, such that

(i) ∥x∥ ≥ 0, for all x ∈ X,

(ii) ∥x∥ = 0 if and only if x = 0,

(iii) ∥αx∥ = |α|∥x∥, for all x ∈ X and α ∈ K, and

(iv) ∥x+ y∥ ≤ ∥x∥+ ∥y∥, for all x, y ∈ X.

If ∥ · ∥ is a norm on X, then we call (X, ∥ · ∥) a normed vector space.

Note that in property (iii) above, if K = R, then |α| is the absolute value of α while,

if K = C, then |α| is the modulus of α. We refer to ∥x∥ as the norm of x. We

typically think of ∥x∥ as the magnitude, or size, of the vector x.

Example 8.2.3. (i) We can de�ne R to be a vector space over the �eld R and

de�ne the norm by ∥x∥ = |x| for all x ∈ R. It is easy to check properties (i)
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through (iii) in the de�nition of the norm. Property (iv) is simply the triangle

inequality for the usual metric d on R. That is,

|x+ y| = d(x,−y) ≤ d(x, 0) + d(0,−y) = |x|+ |y|.

For this reason, property (iv) of the de�nition of a norm is usually referred to

as the triangle inequality for norms. Thus, (R, ∥ · ∥) is a normed space.

(ii) Let n ∈ Z+ and consider Kn to be a vector space over K. Let d2 be the usual
metric on Kn and de�ne ∥x∥ = d2(x, 0). Then ∥ · ∥ is a norm on Kn. Proving

this fact is an exercise below. We typically denote the norm here by ∥ · ∥2 and
it is referred to as the ℓ2-norm on Kn or the Euclidean norm on Kn.

(iii) The set c of convergent sequences of real numbers is a vector space over R. Let
(xn)

∞
n=1 ∈ c. Recall that convergent sequences are bounded. Thus, {|xn| : n ∈

Z+} is a set of real numbers which has an upper bound. Hence, it has a least

upper bound. De�ne ∥(xn)
∞
n=1∥ = sup{|xn| : n ∈ Z+}. Then ∥ · ∥ is a norm

on c. Proving this fact is an exercise below. We typically denote this norm by

∥ · ∥∞. Thus, (c, ∥ · ∥∞) is a normed space.

(iv) The vector space C([a, b]) is a normed space if we de�ne ∥f∥ = sup{|f(x)| : x ∈
[a, b]} and recall that continuous functions on compact sets must be bounded.

Thus, the set f([a, b]) has a least upper bound. We typically denote this norm

by ∥·∥∞ and refer to it as the supremum norm, or by ∥·∥U where the U refers to

the "uniform norm." For those who have taken an analysis course, a sequence

of functions in (C([a, b]), ∥ · ∥∞) converges to a function f precisely when the

sequence converges uniformly to f . Hence, the use of the letter U .

Exercise 8.2.4. (i) Prove (c, ∥ · ∥∞) is a normed space.

(ii) Prove (Kn, ∥·∥2) is a normed space. Hint: You do not have to prove the triangle

inequality from scratch. It is much easier to use the triangle inequality for the

metric d2 to prove the triangle inequality for the norm ∥ · ∥2.
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If (X, ∥ · ∥) is a normed space, then we can always de�ne a metric d on X by

d(x, y) = ∥x − y∥ for all x, y ∈ X. If you recall in Chapter 2 when discussing the

motivation for metric spaces, we de�ned them the way that we did because we did

not always have a meaningful way to de�ne substraction on our set or to de�ne the

magnitude of an element of the set. For normed spaces, we have both so we have

come full circle and are able to de�ne distance in this way. Since we can de�ne a

metric d on X, we can de�ne the topology τ generated by d. Thus, (X, τ) becomes a

topological vector space whose topology is generated by a metric. When discussing

the normed space (X, ∥ · ∥), it is standard to assume that we are considering it a

topological vector space whose topology is generated by the metric d above. Thus,

normed spaces are metric spaces and everything that we have learned in previous

chapters about metric spaces applies to normed spaces. One important property

about metric spaces, as we have already seen, is completeness.

De�nition 8.2.5. A complete normed space (X, ∥ · ∥) is called a Banach space.

Just to reiterate what we were discussing in the previous paragraph, when we say

the normed space (X, ∥ ·∥) is complete, we mean the metric space (X, d) is complete,

where d(x, y) = ∥x− y∥ for all x, y ∈ X. Whenever we discuss topological properties

about a normed space (X, ∥ · ∥) it is because the metric space (X, d) has those

properties.

Example 8.2.6. (i) For any n ∈ Z+, the normed space (Rn, ∥ · ∥2) is a Banach

space. Let (xk)
∞
k=1 be a Cauchy sequence in Rn, where xk = (x1,k, x2,k, . . . , xn,k).

Fix i = 1, 2, . . . , n and consider the sequence (xi,k)
∞
k=1 in R. For ϵ > 0, pick

K ∈ Z+ such that, for all k1, k2 ≥ K, we have that ∥xk1 − xk2∥ < ϵ. Thus,

|xi,k1 − xi,k2| ≤

(
n∑

j=1

|xj,k1 − xj,k2|2
)1/2

< ϵ

and so (xi,k)
∞
k=1 is a Cauchy sequence in R. Since R is complete, there exists

yi ∈ R such that xi,k
k→∞−−−→ yi. Let y = (y1, y2, . . . , yn). Let ϵ > 0. Since there
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are only �nitely many coordinates in Rn, pick K ∈ Z+ large enough so that

|xi,k − yi| < ϵ√
n
for all k ≥ K and all i = 1, 2, . . . , n. Then,

∥xk − y∥ =

(
n∑

i=1

|xi,k − yi|2
)1/2

≤

(
n∑

i=1

(
ϵ√
n

)2
)1/2

= ϵ.

Hence, xk → y. Thus, (Rn, d2) is complete and so (Rn, ∥ ·∥2) is a Banach space.

A similar argument shows that Cn is also a Banach space over the �eld C when

we de�ne ∥z∥ = d(z, 0), where d is the usual metric on Cn.

(ii) The normed space (c00, ∥·∥∞) is not a Banach space. Note that c00 is a subspace

of c so the norm ∥ · ∥∞ is well-de�ned on c00. To see that c00 is not complete

with this norm, for all n ∈ Z+, let xn = (1, 1
2
, 1
3
, . . . , 1

n
, 0, 0, . . . ). Then (x)∞n=1

is a Cauchy sequence in c00. Indeed, let ϵ > 0. Pick N ∈ Z+ such that N > 1
ϵ
.

Then, for n > m ≥ N , we have

∥xn − xm∥ = sup

{
1

m+ 1
,

1

m+ 2
, . . . ,

1

n

}
=

1

m+ 1
<

1

m
<

1

N
< ϵ.

However, the sequence (xn)
∞
n=1 does not converge to an element of c00. As a

sequence inside of c, we have that xn → x where x = ( 1
k
)∞k=1 but x /∈ c00.

(iii) The normed space (C([a, b]), ∥ · ∥∞) is a Banach space although this fact re-

quires some introductory analysis to justify. For those who have taken analysis,

since continuous functions on compact sets are uniformly continuous and se-

quences converge in C([a, b]) precisely when they converge uniformly, the limit

of any convergent sequence would be continuous on [a, b] and thus an element

of C([a, b]).

De�nition 8.2.7. Let (X, ∥ · ∥1) and (Y, ∥ · ∥2) be normed spaces over the same

�eld and let T ∈ L(X, Y ). We say the linear operator T is bounded if the set

{∥Tx∥2 |x ∈ X and ∥x∥1 ≤ 1} is bounded.
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The reader is asked to prove a very useful inequality in the next exercise.

Exercise 8.2.8. Let (X, ∥ · ∥1) and (Y, ∥ · ∥2) be normed spaces over the same �eld

and let T ∈ L(X, Y ). If T is bounded, then there exists C > 0 such that, for all

x ∈ X, we have ∥Tx∥2 ≤ C∥x∥1.

Theorem 8.2.9. Let (X, ∥ · ∥1) and (Y, ∥ · ∥2) be normed spaces over the same �eld

and let T ∈ L(X, Y ). The linear operator T is continuous if and only if it is bounded.

Proof. We will prove the forward direction by contrapositive so suppose {∥Tx∥2 |x ∈
X and ∥x∥1 ≤ 1} is not bounded. Then, for every n ∈ Z+, there exists yn ∈
{∥Tx∥2 |x ∈ X and ∥x∥1 ≤ 1} such that ∥Tyn∥2 ≥ n. Note that ∥yn∥1 = 1, for all

n ∈ Z+. Let xn = 1
n
yn. Then,

∥xn − 0∥1 =
1

n
∥yn∥1 =

1

n
→ 0,

thus, xn → 0. But,

∥Txn − T0∥2 = ∥Txn∥2 =
1

n
∥Tyn∥2 = 1

and so Txn ↛ T0. Hence, T is not continuous.

For the other direction, suppose {∥Tx∥2 |x ∈ X and ∥x∥1 ≤ 1} is bounded. From

Exercise 8.2.8, there exists C > 0 such that ∥Tx∥2 ≤ C∥x∥1, for all x ∈ X. Let

(xn)
∞
n=1 be a sequence in X such that xn → x, for some x ∈ X. Then,

∥Txn − Tx∥2 ≤ C∥xn − x∥1 → 0

and so Txn → Tx. Hence, T is continuous.

Thus, for linear operators, the words "continuous" and "bounded" are synonymous.

We tend to say "bounded" rather than "continuous" though. If (X, ∥ · ∥1) and
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(Y, ∥ · ∥2) are normed spaces over the same �eld, we denote the set of all bounded

linear operators T ∈ L(X, Y ) by B(X, Y ). If (X, ∥ · ∥1) = (Y, ∥ · ∥2), then we write

B(X) instead of B(X,X).

Exercise 8.2.10. Let (X, ∥ · ∥1) and (Y, ∥ · ∥2) be normed spaces over the same

�eld. Prove that B(X, Y ) is a vector space. Hint: We already know that L(X, Y )

is a vector space and B(X, Y ) ⊆ L(X, Y ), so it su�ces to show that B(X, Y ) is a

subspace of L(X, Y ).

Notice that if T ∈ B(X, Y ), then, by de�nition, {∥Tx∥2|x ∈ X and ∥x∥ ≤ 1} is a
bounded subset of R. Thus, it has a least upper bound. Hence, we can de�ne

∥T∥ = sup{∥Tx∥2|x ∈ X and ∥x∥ ≤ 1}.

With the norm ∥ · ∥, the set B(X, Y ) is a normed space as the next proposition

veri�es.

Proposition 8.2.11. Let (X, ∥ · ∥1) and (Y, ∥ · ∥2) be normed spaces over the same

�eld. For every T ∈ B(X, Y ), de�ne

∥T∥ = sup{∥Tx∥2|x ∈ X and ∥x∥ ≤ 1}.

Then ∥ · ∥ is a norm on B(X, Y ).

Proof. To verify property (i) of the de�nition of a norm, note that for any x ∈ X,

we have ∥Tx∥2 ≥ 0, thus ∥T∥ ≥ 0.

For property (ii), if ∥T∥ = 0, then ∥Tx∥2 = 0 for all x ∈ X such that ∥x∥1 ≤ 1. Then,

for any x ∈ X \ {0} we have that ∥ x
∥x∥1∥1 ≤ 1 so ∥ Tx

∥x∥1∥2 = 0. Hence, ∥Tx∥2 = 0

and so Tx = 0. Thus, we have that Tx = 0 for all x ∈ X and so T = 0. The other

direction is trivial since, if T = 0, then {∥Tx∥2 |x ∈ X and ∥x∥1 ≤ 1} = {0}.
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For property (iii), let x ∈ X such that ∥x∥1 ≤ 1 and let α ∈ K. Then,

∥αTx∥2 ≤ |α|∥Tx∥ ≤ |α|∥T∥

and so |α|∥T∥ is an upper bound for {∥αTx∥2 |x ∈ X and ∥x∥1 ≤ 1}, and so,

∥αT∥ ≤ |α|∥T∥. For the reverse inequality, let epsilon > 0. Then there exists

x ∈ X, where ∥x∥1 ≤ 1 such that ∥T∥ ≤ ∥Tx∥2 − ϵ(|α|+ 1)−1. Thus,

|α|∥T∥ ≤ ∥αTx∥2 − ϵ ≤ ∥αT∥ − ϵ.

Since this holds for all ϵ > 0, we have that |α|∥T∥ ≤ ∥αT∥ and therefore |α|∥T∥ =
∥αT∥.

For property (iv), let T, S ∈ B(X, Y ) and let x ∈ X such that ∥x∥1 ≤ 1. Then,

∥(T + S)x∥2 ≤ ∥Tx∥2 + ∥Sx∥2 ≤ ∥T∥+ ∥S∥.

Thus, ∥T∥+ ∥S∥ is an upper bound for the set {∥(T +S)x∥2 |x ∈ X and ∥x∥1 ≤ 1},
and so ∥T + S∥ ≤ ∥T∥+ ∥S∥.

Hence, we have shown that ∥ · ∥ is a norm on B(X, Y ).

The norm de�ned on B(X, Y ) in the previous proposition is often referred to as the

operator norm as there are other ways to de�ne norms on sets of bounded linear

operators. Notice that if T ∈ B(X, Y ), then, for any x ∈ X \ {0}, we have that

∥T ( x
∥x∥1 )∥2 ≤ ∥T∥. Thus, for all x ∈ X, we have the inequality ∥Tx∥2 ≤ ∥T∥∥x∥1.

Obviously, we would like to know when B(X, Y ) is a Banach space. The next theorem

provides us with an answer to this question but we �rst need an exercise.

Exercise 8.2.12. Let (X, ∥ · ∥) be a normed space.

(i) Prove that for all x, y ∈ X, we have |∥x∥ − ∥y∥| ≤ ∥x− y∥.
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(ii) Use the above inequality to prove that if (xn)
∞
n=1 is a sequence in X such that

xn → x, for some x ∈ X, then ∥xn∥ → ∥x∥.

Theorem 8.2.13. Let (X, ∥ ·∥1) be a normed space over the �eld K and let (Y, ∥ ·∥2)
be a Banach space over the �eld K. Then B(X, Y ) is a Banach space.

Proof. Let (Tn)
∞
n=1 be a Cauchy sequence in B(X, Y ).

Claim: For all x ∈ X, we have that (Tnx)
∞
n=1 is a Cauchy sequence in Y .

Let x ∈ X \ {0} and let ϵ > 0. Since (Tn)
∞
n=1 is Cauchy, there exists N ∈ Z+ such

that, for all n,m ≥ N , we have that ∥Tn − Tm∥ < ϵ
∥x∥1 . Thus,

∥Tnx− Tmx∥2 ≤ ∥Tn − Tm∥∥x∥1 < ϵ

and so (Tnx)
∞
n=1 is a Cauchy sequence in Y .

Since Y is complete, there exists yx ∈ Y such that Tnx→ yx. De�ne T : X → Y by

Tx = yx. Thus, we have our candidate for the limit of the sequence (Tn)
∞
n=1. It is

left to show that T is linear, bounded, and that Tn → T .

First, we show T is linear. Let x1, x2 ∈ X. Then,

T (x1+x2) = lim
n→∞

Tn(x1+x2) = lim
n→∞

(Tnx1+Tnx2) = lim
n→∞

Tnx1+ lim
n→∞

Tnx2 = Tx1+Tx2.

Similarly, for α ∈ K and x ∈ X, we have

T (αx) = lim
n→∞

Tn(αx) = α lim
n→∞

Tnx = αTx.

Hence, T is linear.

Now, to show T is bounded, pick N ∈ Z+ such that, for all n,m ≥ N , we have that

∥Tn − Tm∥ ≤ 1. Then, for x ∈ X such that ∥x∥ ≤ 1, we have from Exercise 8.2.13
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that ∥Tx∥2 = limn→∞ ∥Tnx∥2. Thus,

∥Tx∥2 = lim
n→∞

∥Tnx∥2

≤ lim
n→∞

∥Tnx− TNx∥2 + ∥TNx∥2

≤ lim
n→∞

∥Tn − TN∥∥x∥1 + ∥TNx∥2

≤ ∥x∥1 + ∥TN∥

≤ 1 + ∥TN∥.

Thus, T is bounded.

Lastly, to show Tn → T , let ϵ > 0 and pick N ∈ Z+ such that, for all n,m ≥ N , we

have that ∥Tn − Tm∥ < ϵ
2
. Then, for x ∈ X such that ∥x∥1 ≤ 1 and n ≥ N , we have

∥(Tn − T )x∥2 = lim
m→∞

∥(Tn − Tm)x∥2 ≤ ∥Tn − Tm∥∥x∥1 ≤
ϵ

2
∥x∥1 ≤

ϵ

2
< ϵ.

Hence, Tn → T and so B(X, Y ) is complete.

Thus, B(X, Y ) is a Banach space if its codomain is a Banach space. Of particular

interest is when the codomain is R.

De�nition 8.2.14. Let (X, ∥ · ∥) be a normed space over the �eld K. A linear

functional is a linear operator f : X → K. The set of all bounded linear functionals
from X into its scalar �eld K is denoted by X∗ and is called the dual of the normed

space X.

Exercise 8.2.15. Let (X, ∥ · ∥) be a normed space and let f be a linear functional

on X. The functional f is bounded if and only if f−1({0}) is closed.

An immediate consequence of Theorem 8.2.13 and the above de�nition is the follow-

ing corollary.

Corollary 8.2.16. If (X, ∥ · ∥) is a normed space, then X∗ is a Banach space.
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Proof. The set X∗ = B(X,K). Since K can be thought of as a Banach space over

the �eld K, Theorem 8.2.13 �nishes the proof.

Given a normed space (X, ∥·∥1), we can now discuss its dual Banach space (X∗, ∥·∥).
Thus, we can discuss the dual of (X∗, ∥ · ∥), which we denote by X∗∗ and refer to it

as the bidual of the normed space (X, ∥ · ∥1). Note that the bidual is also a Banach
space. We can continue in this fashion to de�ne X∗∗∗, X∗∗∗∗, etc. but we almost

never have a need to de�ne more than the dual and bidual.

There are many motivations for studying the dual and bidual of a normed space and

we will see some of them later in this chapter. One motivation is that it gives us a

convenient way to describe the completion of a normed space. In order to do this, we

�rst need another important Theorem called The Hahn-Banach Extension Theorem.

8.3 Hahn-Banach Extension Theorem

The Hahn-Banach Extension Theorem gives us a convenient way to extend a func-

tional de�ned on a subspace of a vector space to the entire vector space. There are

more general statements of the Hahn-Banach Extension Theorem but the version we

will look at in this section will su�ce for our purposes. Before seeing the theorem,

we �rst need a lemma.

Lemma 8.3.1. Let (X, ∥ · ∥) be a real vector space and suppose there exists a map

p : X → R such that

(i) p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X, and

(ii) p(tx) = tp(x), for all t ∈ [0,∞).

Further, suppose ϕ0 : M → R is a linear map and ϕ0(x) ≤ p(x) for all x ∈M . Then,
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there exists a linear map ϕ : X → R such that ϕ|M = ϕ0 and ϕ(x) ≤ p(x), for all

x ∈ X.

Proof. Let P be the set of all ordered pairs (Y, γ), where Y is a subspace of X which

contains M and γ : Y → R is a linear map such that γ|M = ϕ0 and γ(x) ≤ p(x) for

all x ∈ Y . De�ne the relation ≤ on P by (Y1, γ1) ≤ (Y2, γ2) if and only if Y1 ⊆ Y2

and γ2|Y1 = γ1. Then it is easy to check that P with the relation ≤ is a poset.

We are now going to use Zorn's Lemma to prove P has a maximal element with

respect to this relation. To this end, let C = {(Yi, γi)| i ∈ I} be a chain in P . Let

Y = ∪i∈IYi and γ = ∪i∈Iγi, where we consider γi ⊆ Yi × R. Since C is a totally

ordered set, Y is a subspace of X and γ : Y → R is a linear map. Further, for x ∈ Y ,

there exists i ∈ I such that x ∈ Yi. Since (Yi, γi) ∈ P , we have that γi(x) ≤ p(x).

Then, since γYi
= γi, we have that γ(x) = γi(x) ≤ p(x) and so (Y, γ) ∈ P . Clearly,

(Y, γ) is an upper bound for C. Thus, by Zorn's Lemma, there exists a maximal

element (Z, α) of P .

The proof will be complete if we show that Z = X. Suppose not. Let x0 ∈ X \ Z.
De�ne Z1 = {z + tx0| z ∈ Z and t ∈ R}. Clearly Z1 is a subspace of X and Z ⊂ Z1.

Let z1, z2 ∈ Z. Then,

α(z1) + α(z2) = α(z1 + z2)

≤ p(z1 + z2)

≤ p(z1 − x0) + p(z2 + x0).

So,

α(z1)− p(z1 − x0) ≤ p(z2 + x0)− α(z2)

≤ inf
z2∈Z

(p(z2 + x0)− α(z2)) .
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Thus,

sup
z1∈Z

(α(z1)− p(z1 − x0)) ≤ inf
z2∈Z

(p(z2 + x0)− α(z2)) .

Pick s ∈ R such that

sup
z1∈Z

(α(z1)− p(z1 − x0)) ≤ s ≤ inf
z2∈Z

(p(z2 + x0)− α(z2)) .

De�ne α1 : Z1 → R by α1(z + tx0) = α(z) + ts. Clearly, α1|Z = α. Further, since

s ≤ infz2∈Z (p(z2 + x0)− α(z2)), for any z ∈ Z, we have that α(z) + s ≤ p(z + x0).

So, for t > 0,

α1(z + tx0) = α(z) + ts

= t
(
α
(z
t
)
)
+ s
)

≤ tp
(z
t
+ x0

)
= p(z + tx0).

Similarly, since supz1∈Z (α(z1)− p(z1 − x0)) ≤ s, for any z ∈ Z, we have that α(z)−
s ≤ p(z − x0). So, for any t < 0,

α1(z + tx0) = α(z) + ts

= −t
(
α
(
−z

t

)
− s
)

≤ −tp
(
−z

t
− s
)

= p(z + ts).

Thus, α(z + tx0) ≤ p(z + tx0) for all z ∈ Z and t ∈ R. Hence, (Z, α) ≤ (Z1, α1) and

Z ̸= Z1 contradicting the maximality of (Z, α). Hence, we must have that Z = X

and the proof is complete.

We are now ready to prove a version of The Hahn-Banach Extension Theorem.
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Theorem 8.3.2. (Hahn-Banach Extension Theorem) Let (X, ∥·∥) be a normed

space over the �eld K and let X0 be a subspace of X. Suppose ϕ0 ∈ X∗
0 . Then there

exists ϕ ∈ X∗ such that ϕ|X0 = ϕ0 and ∥ϕ∥ = ∥ϕ0∥.

Proof. Case 1: First, suppose K = R.

De�ne p : X → R by p(x) = ∥ϕ0∥∥x∥. Clearly p satis�es properties (i) and (ii) of

Lemma 8.3.1 and ϕ0(x) ≤ |ϕ0(x)| ≤ ∥ϕ0∥∥x∥ = p(x) for all x ∈ X0. Thus, by Lemma

8.3.1, there exists ϕ : X → R such that ϕ|X0 = ϕ0 and ϕ(x) ≤ p(x) for all x ∈ X.

Let x ∈ X. Then, for k = 1, 2,

|ϕ(x)| = (−1)kϕ(x) = ϕ((−1)kx) ≤ p(x) = ∥ϕ0∥∥(−1)kx∥ = ∥ϕ0∥∥x∥.

Thus, ϕ ∈ X∗ and ∥ϕ∥ ≤ ∥ϕ0∥. Further,

{|ϕ0(x)| : x ∈ X0 , ∥x∥ ≤ 1} = {|ϕ(x)| : x ∈ X0 , ∥x∥ ≤ 1}

⊆ {|ϕ(x)| : x ∈ X , ∥x∥ ≤ 1}

and so ∥ϕ0∥ ≤ ∥ϕ∥. Thus, ∥ϕ0∥ = ∥ϕ∥.

Case 2: Suppose K = C.

Let α0(x) = ℜ(ϕ0(x)), for all x ∈ X0 and let β0(x) = ℑ(ϕ0(x)) for all x ∈ X0. Note

that for all x ∈ X0, we have

ϕ0(ix) + iβ0(ix) = ϕ0(ix) = iϕ0(x) = −β0(x) + iϕ0(x).

Hence, β0(x) = −α0(ix), for all x ∈ X0.

Now, if we α0 : X0 → R is a linear map, where we consider X0 to be a real vector
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space by restricting scalar multiplication to R. Further,

|α0(x)| ≤ |ϕ0(x)| ≤ ∥ϕ0∥∥x∥, for all x ∈ X0.

Thus, by Case 1, there exists α : X → R, where we restrict scalar multiplication on

X to R, such that α|X)
= α and |α(x)| ≤ ∥ϕ0∥∥x∥, for all x ∈ X.

Next, de�ne ϕ : X → C by ϕ(x) = α(x)−iα(ix) and note that since β0(x) = −α0(ix),

for all x ∈ X), we have that ϕ|X)
= ϕ0. Now, let x ∈ X. Then ϕ(x) = reiθ, for some

r ≥ 0 and θ ∈ R. Then,

|ϕ(x)| = e−iθϕ(x) = ϕ(e−iθx) = α(e−iθx) ≤ |α(e−iθx)| ≤ ∥ϕ0∥∥e−iθx∥ = ∥ϕ0∥∥x∥.

Thus, ϕ ∈ X∗ and ∥ϕ∥ ≤ ∥ϕ0∥. Lastly,

{|ϕ0(x)| : x ∈ X0 , ∥x∥ ≤ 1} = {|ϕ(x)| : x ∈ X0 , ∥x∥ ≤ 1}

⊆ {|ϕ(x)| : x ∈ X , ∥x∥ ≤ 1}

so we also have that ∥ϕ0∥ ≤ ∥ϕ∥.

Exercise 8.3.3. Let (X, ∥ · ∥) be a normed space over the �eld K.

(i) Prove X∗ separates points of X. Hint: Let x, y ∈ X where x ̸= y and let

X0 = Span{x, y}. De�ne f0 : X0 → K by f0(αx + βy) = α. Then f0 ∈ X∗
0 .

Now, use The Hahn-Banach Extension Theorem to �nd f ∈ X∗ such that

f(x) ̸= f(y).

(ii) Let x ∈ X. Prove there exists f ∈ X∗ such that ∥f∥ = 1 and f(x) = ∥x∥.
Hint: Let X0 = Span{x} and de�ne f0 ∈ X∗

0 by f0(αx) = α∥x∥. Use The Hahn
Banach Extension Theorem to �nd f ∈ X∗ such that ∥f∥ ≤ 1 and f(x) = ∥x∥.
Then, the fact that ∥f∥ ≤ 1 and f(x) = ∥x∥ implies that actually ∥f∥ = 1.
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8.4 Completions of Normed Spaces

Recall from Section 7.1, to �nd the completion of a normed space (X, ∥ · ∥1), it is
enough to �nd an isometric embedding f of (X, ∥ · ∥1) into a Banach space (Y, ∥ · ∥2)
such that f(X) is dense in Y . It should be stated that "isometric embedding" is

typically de�ned di�erently in the �eld of functional analysis. We will discuss this

more later.

De�nition 8.4.1. Let (X, ∥·∥) be a normed space and de�ne a function j : X → X∗∗

by

j(x)(f) = f(x), for all f ∈ X∗ and x ∈ X.

The map j is referred to as the canonical embedding of X into its bidual.

The above de�nition takes a few moments to make sense. The map j maps elements

of X to elements of X∗∗. Thus, for x ∈ X, we have that j(x) ∈ X∗∗ and X∗∗ is

the set of all bounded linear functionals from X∗ to K. Thus, j(x) : X∗ → K. So,

j(x) must map elements of X∗ to elements of K. Elements of X∗ are bounded linear

functionals of the form f : X → K. Hence, j(x) must map objects like f to elements

of K. The most obvious way to do this is to de�ne j(x)(f) = f(x), which is precisely

what the map j does.

Theorem 8.4.2. Let (X, ∥ · ∥) be a normed vector space and let j : X → X∗∗ be the

canonical embedding of X into its bidual. Then j is an isometric embedding.

Proof. Although j is called an "embedding" we have not actually shown that it is

injective. To this end, let x1, x2 ∈ X and suppose j(x1) = j(x2). Then j(x1)(f) =

j(x2)(f) for all f ∈ X∗. That is, f(x1) = f(x2) for all f ∈ X∗. By Exercise 8.3.3, we

know that X∗ separates points of X so this can only be the case if x1 = x2. Hence,

j is injective.
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To show j is an isometry, we want to show that ∥j(x)∥ = ∥x∥ for all x ∈ X. Let

x ∈ X. For f ∈ X∗ such that ∥f∥ ≤ 1, we have that

|j(x)(f)| = |f(x)| ≤ ∥f∥∥x∥ ≤ ∥x∥.

Hence, ∥x∥ is an upper bound for {|j(x)(f)| : f ∈ X∗ and ∥f∥ ≤ 1} and so ∥j(x)∥ ≤
∥x∥. By Exercise 8.3.3, there exists f ∈ X∗ such that ∥f∥ ≤ 1 and f(x) = ∥x∥.
Then, |j(x)(f)| = |f(x)| = ∥x∥. Thus, ∥x∥ ∈ {|j(x)(f)| : f ∈ X∗ and ∥f∥ ≤ 1} and
so ∥x∥ ≤ ∥j(x)∥. Hence, ∥j(x)∥ = ∥x∥ and so j is an isometry. Therefore, j is an

isometric embedding of X into X∗∗.

Since j is an isometric embedding, X is isometric to j(X). Thus, the completion

of X, which we denote by X̂, is given by X̂ = j(X), since j(X) is a closed subset

of a complete metric space. It should be mentioned though, that the normed space

(X, ∥ · ∥) is not just a topological space but an algebraic space as well. We can't

simply identify the normed space X with j(X) because they are isometric (which

relies soley on the metric space structure) without also checking that they are alge-

braically equivalent as well. Fortunately, j is also a linear operator, that is, a vector

space homomorphism (checking this fact is a following exercise). So it preserves

the algebraic structure as well. Thus, for all intents and purposes, X and j(X) are

the same normed vector space. For this reason, "isometric embedding" is typically

de�ned di�erently in a functional analysis textbook as we also want the isometric

embedding to be a linear operator to preserve the operations.

Exercise 8.4.3. Let (X, ∥ · ∥) be a normed space and let j : X → X∗∗ be the

canonical embedding of X into its bidual. Prove that j is a linear operator.

8.5 The Weak and Weak∗ Topologies

We are now able to discuss other types of topologies on normed vector spaces.
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De�nition 8.5.1. Let (X, ∥ · ∥) be a normed vector space. The weak topology

on X is the weak topology generated by the set of functions X∗. That is, the

weak topology is the weakest topology on X which makes all the elements of X∗

continuous. Further, the weak∗ topology on X∗ is the weak topology generated by

the set of functions j(X). That is, it is the weakest topology on X∗ which makes all

the elements of j(X) continuous.

Note that we can only de�ne the weak topology on X but we can de�ne the weak

topology and the weak∗ topology on X∗. In general, j(X) ̸= X∗∗, thus the weak

topology on X∗ is not the same thing as the weak∗ topology on X∗. Obviously, since

j(X) ⊆ X∗∗, we have that the weak∗ topology is weaker than the weak topology on

X∗. When we have a normed space X such that j(X) = X∗∗, we call it re�exive.

Notice that the weak∗ topology on X∗ is precisely the topology of pointwise conver-

gence. That is, a net (fλ)λ∈Λ converges to some f ∈ X∗ if and only if j(x)(fλ) →
j(x)(f), for all x ∈ X, which is if and only if fλ(x) → f(x) for all x ∈ X. Thus, a

motivation for de�ning the weak∗ topology on X∗ is made clear.

In general, normed vector spaces endowed with the weak topology or weak∗ topology

are not �rst countable. Thus, we have to use nets rather than sequences to check

properties like openness, closedness, and compactness of sets or continuity of func-

tions. If you recall, an important property for the generating set of functions for a

weak topology is that it separates points. We check that this is the case for the weak

and weak∗ topologies in the next exercise.

Exercise 8.5.2. Let (X, ∥ · ∥) be a normed vector space. We have already seen that

X∗ separates points of X. Prove that j(X) separates points of X∗.

Thus, the weak topology and the weak∗ topology are always Hausdor�.

It turns out that when investigating topological vector spaces, the situation is very

di�erent if we are dealing with a �nite-dimensional vector space versus an in�nite-
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dimensional vector space. So di�erent, in fact, that the two situations fall under

the umbrella of di�erent �elds of mathematics, with the study of �nite-dimensional

vector spaces belonging to Linear Algebra, whereas, the study of in�nite-dimensional

vector spaces is the focus of Functional Analysis. In the next section, we will focus our

attention on �nite-dimensional vector spaces. Afterwards, we will focus on in�nite-

dimensional vector spaces. Once these sections are complete, the reader should see

why these two topics are markedly di�erent.

8.6 Finite-Dimensional Vector Spaces

We should already be aware of the fact, from Linear Algebra, that if X is a �nite-

dimensional real vector space, with dimension n, thenX is algebraically equivalent to

Rn. Further, if X is an n-dimensional complex vector space, then X is algebraically

equivalent to Cn. Indeed, given an n-dimensional vector space X with basis B =

{e1, e2, . . . , en}, every element x of X can be uniquely expressed in the form x =

α1e1 + α2e2 + · · · + αnen, for some α1, α2, . . . , αn ∈ K. Thus, we can make the

association

x = α1e1 + α2e2 + · · ·+ αnen ←→



α1

α2

·
·
αn


which respects the algebraic operations. Thus, if we are only interested in the alge-

braic properties of �nite-dimensional vector spaces, then there is no need to study

anything other than Rn for real vector spaces and Cn for complex vector spaces.

What if, though, we want to incorporate topological properties as well? Are there

di�erent vector topologies that we can impose on Rn and Cn which will give us

di�erent topological properties? In this section, we will answer these questions.
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First, recall that when we say two metrics de�ned on the same set are equivalent, we

mean that the topologies the two metrics generate are the same. Here, when we say

two norms de�ned on the same set are equivalent, we mean the topologies the two

norms generate are equivalent. We also saw that if d1 and d2 are two metrics de�ned

on a set X and there exists k,K >) such that

kd1(x1, x2) ≤ d2(x1, x2) ≤ Kd1(x1, x2), for all x1, x2 ∈ X

then d1 and d2 are equivalent. If our metrics are given by the norms ∥ · ∥1 and ∥ · ∥2
then the above string of inequalities is equivalent to

k∥x∥1 ≤ ∥x∥2 ≤ K∥x∥1, for all x ∈ X.

Thus, two norms ∥c∥̇1 and ∥·∥2 de�ned on the same set X are equivalent (or generate

the same topology) if we can �nd k,K > 0 such that

k∥x∥1 ≤ ∥x∥2 ≤ K∥x∥1, for all x ∈ X.

We are now ready to look at the �rst theorem of this section.

Theorem 8.6.1. Let ∥ · ∥1 and ∥ · ∥2 be norms de�ned on the vector space Kn over

the �eld K, for some n ∈ Z+. Then there exists k,K > 0 such that

k∥x∥1 ≤ ∥x∥2 ≤ K∥x∥1, for all x ∈ Kn.

Thus the norms ∥ · ∥1 and ∥ · ∥2 are equivalent.

Proof. Let β = {b1, b2, . . . , bn} be a basis for Kn. De�ne ∥ · ∥3 : Kn → R by ∥x∥3 =∑n
k=1 |αk|, where x = α1b1 + α2b2 + · · · + αnbn. Since representations of vectors as

linear combinations of basis elements are unique, we have that ∥ · ∥3 is well-de�ned.
It is easy to check that ∥ · ∥3 is a norm on Kn.
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Now, consider the norm ∥ · ∥1 as a function ∥ · ∥1 : (Kn, ∥ · ∥3) → [0,∞). Let M =

max{∥bk∥1 : k = 1, 2, . . . , n}. Then, for x ∈ Kn, where x = α1b1 +α2b2 + · · ·+αnbn,

we have

∥x∥1 =

∥∥∥∥∥
n∑

k=1

αkbk

∥∥∥∥∥ ≤M

n∑
k=1

|αk| = M∥x∥3.

Thus, ∥ · ∥1 : (Kn, ∥ · ∥3)→ [0,∞) is a continuous function.

Next, we would like to show that S = {x ∈ Kn| ∥x∥3 = 1} is a compact subset of

(Kn, ∥ · ∥3). Since (Kn, ∥ · ∥3) is a metric space, by Theorem ??, it is enough to show

S is sequentially compact in (Kn, ∥ · ∥3). Let (xk)
∞
k=1 be a sequence in (Kn, ∥ · ∥3).

We have to show there exists a subsequence which coinverges to an element of S.

Let xk = αk1b1 + αk2b2 + · · ·+ αknbn, for all k ∈ Z+. Since

|αk1 ≤
n∑

j=1

|αkj| = ∥xk∥3 = 1

we have that (αk1)
∞
k=1 is a sequence in [−1, 1]. Since the set [−1, 1] is compact, there

exists a subsequence (αkj1)
∞
j=1 such that αkj1 → γ1, for some γ1 ∈ [−1, 1]. Similarly,

we can �nd a subsequence of (αkj2)
∞
j=1 which converges to some γ2 ∈ [−1, 1], and

continue in this fashion up to n so that we then have a subsequence (xks)
∞
s=1 of

(xk)
∞
k=1, where xks = αks1b1 + αks2b2 + · · · + αksnbn, such that xks

∥·∥3−−→ x, where

x = γ1b1 + γ2b2 + · · · + γnbn. And, since S is closed with respect to ∥ · ∥3, we have
that x ∈ S. Thus, S is compact with respect to ∥ · ∥3.

Now, we have that ∥·∥1 : (Kn, ∥·∥3)→ [0,∞) is continuous and S is a compact subset

of (Kn, ∥ · ∥3). Thus, ∥ · ∥1(S) is a compact subset of [0,∞). Hence, by The Extreme

Value Theorem (Theorem ??), ∥ · ∥1 attains a minimum c1 and maximum c2 on S.

Note that c1 ̸= 0 since 0 /∈ S. Thus, we have c1, c2 > 0 such that c1 ≤ ∥x∥1 ≤ c2, for

all x ∈ S.
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Next, let x ∈ Kn. Then x
∥x∥3 ∈ S so

c1 ≤
∥∥∥∥ x

∥x∥3

∥∥∥∥
1

≤ c2

and so

c1∥x∥3 ≤ ∥x∥1 ≤ c2∥x∥3.

Since ∥ · ∥1 is a generic norm on X, as is ∥ · ∥2, we also have shown that there exists

d1, d2 > 0 such that

d1∥x∥3 ≤ ∥x∥2∥d2∥x∥3.

Then,

∥x∥1 ≤ c2∥x∥3 ≤
c2
d1
∥x∥2

and

∥x∥1 ≥ c1∥x∥3 ≥
c1
d2
∥x∥2.

Hence, there exists k,K > 0 such that

k∥x∥2 ≤ ∥x∥1 ≤ K∥x∥2

and the proof is complete.

Thus, any norm we de�ne on Rn will produce the same topology as the Euclidean

norm which, in turn, produces the usual topology. Similarly, any norm we de�ne

on Cn will produce the usual topology on Cn. Thus, for all intents and purposes,

the only n-dimensional real normed vector space is the Banach space Rn with the

Euclidean norm and the only n-dimensional complex normed vector space is the

Banach space Cn with the Euclidean norm.

For general normed spaces (X, ∥·∥1) and (Y, ∥·∥2), we know that B(X, Y ) ⊆ L(X, Y ).

The next proposition tells us, that if X is �nite-dimensional, then we actually have
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B(X, Y ) = L(X, Y ).

Proposition 8.6.2. Let (X, ∥ · ∥1) and (Y, ∥ · ∥2) be normed spaces over the same

�eld K. If X is �nite-dimensional, then B(X, Y ) = L(X, Y ).

Proof. Since X is �nite-dimensional, there exists n ∈ Z+ and b1, b2, · · · , bn ∈ X such

that β = {b1, b2, . . . , bn} is a basis for X. Recall from the proof of Theorem 8.6.1, if

we de�ne ∥ · ∥3 : X → R by ∥x∥3 =
∑n

k=1 |αk|, where x = α1b1 + α2b2 + · · · + αnbn,

then ∥ · ∥3 is a norm on X. Thus, from Theorem 8.6.1, there exists C > 0 such that

∥x∥3 ≤ C∥x∥1 for all x ∈ X.

Let T ∈ L(X, Y ). Now, let M = max{∥Tbk∥2 : k = 1, 2, . . . , n} and let x ∈ X such

that ∥x∥ ≤ 1. Then, x = α1b1 + α2b2 + · · · + α2bn, for some α1, α2, . . . , αn ∈ K.
Further,

∥Tx∥2 = ∥T (α1b1 + α2b2 + · · ·+ αnbn)∥2
= ∥α1Tb1 + α2Tb2 + · · ·+ αnTbn∥2
≤ |α1|∥Tb1∥2 + |α2|∥Tb2∥2 + · · ·+ |αn|∥Tbn∥2
≤M (|α1|+ |α2|+ · · ·+ |αn|)

= M∥x∥3
≤MC∥x∥1
≤MC.

Thus, the set {∥Tx∥2 : x ∈ X , ∥x∥ ≤ 1} is bounded above and so T ∈ B(X, Y ).

Recall that L(Rn,Rm) = Mm×n(R). Since we now know L(Rn,Rm) = B(Rn,Rm), we

have that all matrices are automatically bounded, i.e., continuous.

Further, if X = Rn, then X∗ = B(Rn,R) = M1×n(R). From Linear Algebra, we know

that M1×n(R) is an n-dimensional vector space, thus X∗ with the operator norm is
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algebraically and topologically equivalent to Rn. That is, X∗ = X. Consequently,

we also have that X is re�exive since this implies X∗∗ = X.

Still, we de�ned the weak topology for general normed spaces X (the weak topology

generated by X∗). What is the weak topology on Rn or Cn? The next theorem

answers this question.

Theorem 8.6.3. Let τ1 we the weak topology on Kn and let τ2 be the topology on Kn

generated by the Euclidean norm. Then τ1 = τ2.

Proof. Let X = Kn. By de�nition, every element of X∗ is continuous with respect

to τ2. Since τ1 is the weakest topology which makes every element of X∗ continuous,

we have that τ1 ⊆ τ2.

For the other inclusion, consider the projection maps πk : X → K, for k = 1, 2, . . . , n.

It is easy to check that each projection map is linear. By Proposition 8.6.2, we have

that πk ∈ X∗, for each k = 1, 2, . . . , n. Thus, by Exercise ??, if τ3 is the weak topology

generated by the projections maps, then τ3 ⊆ τ1. The weak topology generated by

the projection maps is precisely the product topology on X. Further, for X = Kn,

we know the product topology equals the usual topology τ2. Thus, τ2 = τ3 ⊆ τ1 and

therefore τ1 = τ2.

Thus, there is no need to consider the weak topology on a �nite-dimensional vector

space as it still produces the usual topology. If X is �nite-dimensional, we saw that

X = X∗, thus, we could impose the weak∗ topology on X but, if Y = X∗, then

Y ∗ = X∗∗ = X∗ so the above theorem tells us that the weak∗ topology on Rn is

again going to be the usual topology.

In conclusion, for �nite-dimensional vector spaces, the only meaningful vector topol-

ogy to consider is the usual topology. Further, all of our linear operators are matrices

which are automatically continuous, making any discussion about continuity of linear

functions unnecessary.
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While we almost exclusively use the Euclidean norm as the norm of choice for Kn

(because it has additional geometric properties which are useful), this is not always

the case with the �nite-dimensional vector space Mm×n(K). While all of the norms

de�ned on Mm×n(K) generate the same topology, it is sometimes useful to use norms

di�erent than the operator norm.

8.7 In�nite-Dimensional Vector Spaces

We saw in the last section that if the domain of a linear operator was �nite-dimensional,

then the linear operator was automatically bounded. This is not the case, if the do-

main is an in�nite-dimensional vector space as the next example illustrates.

Example 8.7.1. Let P ([0, 1]) be the vector space of polynomials de�ned on [0, 1]].

Since P ([0, 1]) is a subspace of C([0, 1]), we can de�ne the supremum norm ∥ · ∥∞
on P ([0, 1]). De�ne D : P ([0, 1])→ P ([0, 1]) by D(p) = p′, where p′ is the derivative

of p. Clearly, D is a linear operator but it is not bounded. To see this, consider

pn(x) = xn, for all n ∈ Z+. Then, ∥pn∥∞ = 1 but ∥D(pn)∥∞ = n. Thus, for any

M > 0, we can �nd a pn ∈ P ([0, 1]) such that ∥D(pn)∥∞ ≥ M∥pn∥∞. Hence, D is

not bounded (and so not continuous).

The above example shows that, in general, linear operators are not automatically

bounded. Next, we will look at some important theorems about linear operators on

general normed vector spaces.

It is easy to verify (exercise below) that if (X, ∥ · ∥1) and (Y, ∥ · ∥2) are normed spaces

and T ∈ B(X, Y ) is an open function, then T is surjective.

Exercise 8.7.2. Let (X, ∥ ·∥1) and (Y, ∥ ·∥2) be normed spaces and let T ∈ B(X, Y ).

If T is an open map, then T is surjective. Hint: We want to prove T (X) = Y .

Obviously, T (X) ⊆ Y . For the other inclusion, ince T is open, T (X) is open.
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Hence, there exists ϵ > 0 such that BY (0, ϵ) ⊆ T (X). Now show, for any y ∈ Y , that

y ∈ T (X).

The next theorem proves the converse of the above exercise in the case when (X, ∥·∥1)
and (Y, ∥ · ∥2) are Banach spaces.

Theorem 8.7.3. (Open Mapping Theorem) Let (X, ∥ · ∥1) and (Y, ∥ · ∥2) be

Banach spaces and let T ∈ B(X, Y ). If T is surjective, then T is an open function.

Proof. Let BZ(x0, r) = {x ∈ Z| ∥x− x0∥ < r}, where Z is either X or Y .

Claim: There exists ϵ > 0 such that BY (0, ϵ) ⊆ T (BX(0, 1)).

Since T is surjective, we have that Y = ∪∞n=1T (BX(0, n)). Since Y is a complete

metric space, by The Baire Category Theorem (Theorem ??) there must exist n ∈ Z+

such that T (BX(0, n)) is not nowhere dense. This is,
(
T (BX(0, n))

)o
̸= ∅. Since

T (BX(0, n)) = nT (Bx(0, 1)), we then have that
(
T (BX(0, 1))

)o
̸= ∅. Hence, there

exists y ∈ Y and s > 0 such that BY (y, s) ⊆ T (BX(0, 1)). Note that we also have

BY (−y, s) ⊆ T (BX(0, 1)). Thus, if y0 ∈ Y and ∥y0∥ < s, then,

y0 = y + (y0 − y) ∈ 2T (BX(0, 1)) ⊆ T (BX(0, 2))

and so BY (0, s) ⊆ T (BX(0, 2)). Hence, we have that, for t = s
2
, the inclusion

BY (0, t) ⊆ T (BX(0, 1)) and so, for ϵ > 0, we have BY (0, ϵt) ⊆ T (BX(0, ϵ)).

Thus, we have shown the following property:

Property: For all ϵ > 0 and all δ > 0, if y ∈ Y and ∥y∥2 < ϵt, then there exists

x ∈ X such that ∥x∥1 < ϵ and ∥y − Tx∥2 < δ.

Let y0 ∈ BY (0, t). Then, using the above property for ϵ = 1, δ = t
2
, and y = y0, we

�nd x0 ∈ X such that ∥x0∥1 < 1 and ∥y0 − Tx0∥2 < t
2
.
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Now, use the property again but with ϵ = 1
2
, δ = t

22
, and y = y0 − Tx0 (where we

then label y1 = y0− Tx0) to �nd x1 ∈ X such that ∥x1∥1 < 1
2
and ∥y1− Tx1∥2 < t

22
.

Continue in this fashion to construct a sequence (xn)
∞
n=0 in X and a sequence (yn)

∞
n=1

in Y such that ∥xn∥1 < 1
2n
, ∥yn∥2 < t

2n
, and yn = yn−1 − Txn−1, for all n ∈ Z+.

It is an exercise given afterward to show that since
∑∞

n=0 ∥xn∥1 < ∞ and X is a

complete metric space, that
∑∞

n=0 = x, for some x ∈ X. Also, note that for n ∈ Z+,

yn = yn−1 − Txn−1

= yn−2 − Txn−2 − Txn−1

= . . .

= y0 − T

(
n−1∑
k=0

xk

)
.

Thus, since T is continuous,

0 = lim
n→∞

yn = lim
n→∞

(
y0 − T

(
n∑

k=0

xk

))
= y0 − Tx

and so Tx = y0. Further, since ∥
∑n

k=0 xk∥1 < 2, for all n ∈ N and
∑n

k=0 xk → x,

we have that ∥x∥1 < 3. Thus, BY (0, t) ⊆ T (BX(0, 3)) and so, for ϵ = t
3
, we have

BY (0, ϵ) ⊆ T (Bx(0, 1)). This completes the proof of the claim.

We now want to show T (BX(0, 1)) is open. Let y ∈ T (BX(0, 1)). Then y = Tx, for

some x ∈ X where ∥x∥1 < 1. Pick r ∈ R such that 0 < r < 1− ∥x∥1. Then,

BY (y, rϵ) = y +BY (0, rϵ) ⊆ y + T (BX(0, r)) = T (BX(x, r)) ⊆ T (BX(0, 1))

and so T (BX(0, 1)) is open.

Now, for any basic open setBX(x0, r) inX, we have T (BX(x0, r)) = Tx0+rT (BX(0, 1))
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which is open. Hence, T is an open function.

Exercise 8.7.4. Let (X, ∥ · ∥) be a Banach space and let (xn)
∞
n=1 be a sequence in

X. Prove that if
∑∞

n=1 ∥xn∥ < ∞, then there exists x ∈ X such that
∑∞

n=1 xn = x.

Hint: Recall your de�nitions from Calculus. When we say
∑∞

n=1 xn = x, we mean

the sequence of partial sums (
∑k

n=1 xn)
∞
k=1 converges to x. Since

∑∞
n=1 ∥xn∥ < ∞,

we know its sequence of partial sums is Cauchy. Use this to show the sequence of

partial sums (
∑k

n=1 xn)
∞
k=1 is Cauchy. Then use the fact that X is a complete metric

space.

One consequence of The Open Mapping Theorem is given in the following corollary.

Corollary 8.7.5. Let (X, ∥·∥1) and (Y, ∥·∥2) be Banach spaces and let T ∈ B(X, Y ).

If T is bijective, then T is invertible and T−1 ∈ B(Y,X).

Proof. Obviously, T−1 is well-de�ned, since T is bijective. Since T is surjective, we

have from The Open Mapping Theorem, that T is open. Thus, T−1 is continuous.

Since linear operators are continuous if and only if they are bounded, we have that

T−1 ∈ B(Y,X).

As with most functions, linear operators included, we are often interested in knowing

when they are invertible. We already know that if a function is bijective then it has

an inverse. Thus, given a bijective T ∈ B(X, Y ), we already know that T−1 exists. If

X and Y are �nite-dimensional, then we automatically obtain that T−1 is bounded,

since all linear operators in this case are bounded. What the above proposition tells

us is that, in the case when X and Y are in�nite-dimensional, there is still no need

to check if T−1 ∈ B(Y,X) as The Open Mapping Theorem guarantees that this is

the case.

Another important theorem about the continuity of a linear operator has to do with

the graph of a linear operator. We will start with a de�nition.
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De�nition 8.7.6. Let X and Y be vector spaces and let T ∈ L(X, Y ). The graph

of T , denoted by G(T ), is a subset of X × Y and is given by

G(T ) = {(x, Tx)|x ∈ X}.

Exercise 8.7.7. Let (X, ∥ · ∥1) and (Y, ∥ · ∥2) be normed spaces. Prove that if

T ∈ B(X, Y ), then G(T ) is closed.

The next theorem proves the converse of the above exercise in the case when both

normed spaces are complete.

Theorem 8.7.8. (Closed Graph Theorem) Let (X, ∥·∥1) and (Y, ∥·∥2) be Banach
spaces and let T ∈ L(X, Y ). If T has a closed graph (that is, G(T ) is a closed subset

of X × Y with the product topology), then T ∈ B(X, Y ).

Proof. De�ne ∥ · ∥3 : X ×Y → R by ∥(x, y)∥3 = ∥x∥1+ ∥y∥2. It is easy to check that

∥ · ∥3 is a norm on X × Y . Further, a sequence ((xn, yn))
∞
n=1 in X × Y converges to

some (x, y) ∈ X × Y with respect to ∥ · ∥3 if and only if xn → x and yn → y. This,

in turn, is true, if and only if π1((xn, yn))→ π1((x, y)) and π2((xn, yn))→ π2((x, y))

which is if and only if (xn, yn)→ (x, y) with respect to the product topology. Thus,

the norm ∥ · ∥3 induces the product topology on X × Y . Since G(T ) is closed, we

have that (G(T ), ∥ · ∥3) is a Banach space. The maps π1 and π2 are continuous since

X×Y has the product topology, thus π1|G(T ) is continuous by Theorem ??. Further,

π1|G(T ) is bijective and so, by Corollary 8.7.5, we have that (π1|G(T ))
−1 is continuous.

Thus, T = π2 ◦ (π1|G(T ))
−1 is continuous by Exercise ??.

At �rst glance, the usefulness of The Closed Graph Theorem might be missed. Sup-

pose T ∈ L(X, Y ) and we would like to prove that T is continuous. The standard

approach is to let (xn)
∞
n=1 be a sequence in X such that xn → x, for some x ∈ X,

and then we are tasked with showing that Txn → Tx.
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The Closed Graph Theorem tells us that to prove T is continuous, it is enough

to prove G(T ) is closed. To do this, we let ((xn, Txn))
∞
n=1 be a sequence in G(T )

such that (xn, Txn) → (x, y), for some (x, y) ∈ X × Y , and we want to show that

(x, y) ∈ G(T ). To do this, we simply have to show Tx = y. Note though that since

(xn, Txn)→ (x, y), we have that xn → x and Txn → y.

Hence, in our �rst strategy we end up with a sequence (xn)
∞
n=1 such that xn → x, for

some x ∈ X, and we have to show that (Txn)
∞
n=1 converges to something, and that

the something is Tx.

In our second strategy, provided to us by The Closed Graph Theorem, we end up

with a sequence (xn)
∞
n=1 such that xn → x, for some x ∈ X and we further have

that Txn → y, for some y ∈ Y , and we have to show Tx = y. Thus, with the

second strategy, one of our tasks in the �rst strategy is done for us. We already

know (Txn)
∞
n=1 converges to something. We just have to show that the something is

Tx.

If the reader recalls the proof of Theorem 8.6.1, which showed that any two norms

de�ned on a �nite-dimensional vector space are equivalent, it relied heavily on the fact

that the closed unit sphere, S, was compact. If the closed unit sphere of an in�nite-

dimensional vector space is also compact, a variation of the proof given in Theorem

8.6.1 might show that two norms de�ned on the same in�nite-dimensional vector

space X must be equivalent, especially if we allow ourselves to add a few assumptions

about X. One of the surprising things about in�nite-dimensional Banach spaces is

that, in fact, the closed unit sphere is never compact, as the next theorem shows.

Theorem 8.7.9. If (X, ∥·∥) is a Banach space. The unit sphere S = {x ∈ X| ∥x∥ =
1} is compact with respect to the norm if and only if X is �nite-dimensional.

Proof. For the backwards direction, suppose X is �nite-dimensional. Since S is

closed and bounded, by The Heine-Borel Theorem, S is compact.
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For the forward direction, suppose S is compact. For any x ∈ X we have, by Exercise

8.3.3, that there exists fx ∈ X∗ such that fx(x) = ∥x∥. Thus, for x ̸= 0, we have

that x ∈ X \ f−1
x ({0}). Since {0} is closed and fx is continuous, the set f−1

x ({0}) is
closed and so X \ f−1

x ({0}) is open. Thus,

S ⊆
⋃

f∈X∗

(
X \ f−1({0})

)
is an open cover of S. Since S is compact, there exists a �nite subcover. That is,

there exists n ∈ Z+ and f1, f2, . . . , fn ∈ X∗ such that

S ⊆
n⋃

k=1

(
X \ f−1

k ({0})
)
. (8.1)

De�ne T : X → Kn by T (x) = (f1(x), f2(x), . . . , fn(x)). The map T is clearly linear.

Further, if x1, x2 ∈ X and T (x1) = T (x2) then fk(x1) = fk(x2) for all k = 1, 2, . . . , n.

If x1 ̸= x2, then
x1−x2

∥x1−x2∥ ∈ S and

f

(
x1 − x2

∥x1 − x2∥

)
= 0 , for all k = 1, 2, . . . , n.

But, by Equation (8.1), we have that there exists k = 1, 2, . . . , n such that x1−x2

∥x1−x2∥ ∈
X \ f−1

k ({0}), which implies that fk(
x1−x2

∥x1−x2∥) ̸= 0. This is a contradiction. Hence, we

have that x1 = x2 and so T is injective. Therefore, since T : X → Kn is linear and

injective, the dimension of X must be at most n and so X is �nite-dimensional.

Exercise 8.7.10. Let (X, ∥ · ∥) be an in�nite dimensional Banach space.

(i) We know X∗ is a Banach space. Prove that it is also in�nite-dimensional.

(ii) Prove that S = {f ∈ X∗ : ∥f∥ = 1} is closed.

(iii) Prove that the closed unit ball BX∗(0, 1) in X∗ is not compact. Hint: If the

closed unit ball were compact, what would that imply about the closed set S?
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Note that the above theorem does not imply that given an in�nite-dimensional vector

space, two di�erent norms can't induce the same topology. It is simply saying, among

other things, that our proof strategy to show norms must be equivalent in �nite

dimensions won't work here. The following example shows that we can, in fact, have

two norms de�ned on the same vector space which do not produce the same topology.

Example 8.7.11. Consider the vector space C([0, 1]). De�ne ∥f∥∞ = sup{|f(x)| :
x ∈ [0, 1]} which is well-de�ned since a continuous function f : [0, 1]→ R is bounded.

Also, de�ne ∥f∥1 =
∫ 1

0
|f(x)|dx which is well-de�ned since continuous functions are

Riemann integrable. Consider fn : [0, 1]→ R de�ned by fn(x) = xn. Then fn
∥·∥1−−→ 0,

where 0 is the constant 0 function, since

∥fn − 0∥1 =
∫ 1

0

xndx =
1

n+ 1
→ 0.

But, (fn)
∞
n=1 does not converge to 0 with respect to ∥ · ∥∞ since ∥fn− 0∥∞ = 1 for all

n ∈ Z+. Thus, by Proposition ??, the topology generated by ∥ · ∥∞ is not contained

in the topology generated by ∥·∥1 and so the two norms generate di�erent topologies.

While in �nite dimensions, any norm we de�ne will produce the usual topology,

thus ensuring the exact same topological properties. For in�nite-dimensional vector

spaces, di�erent norms will potentially produce di�erent topologies, thus giving us

di�erent topological properties. So, for example, a subset A of an in�nite-dimensional

vector spaceX could be closed or not closed, compact or not compact, etc. depending

on the norm that we de�ne on X.

For �nite-dimensional vector spaces, we saw that the weak and weak∗ topologies were

also equal to the usual topology on Rn or Cn. In general, for in�nite-dimensional

normed spaces, the weak topology and (when applicable) the weak∗ topology will

produce di�erent vector topologies than the one induced by the norm.

In summary, given a �nite-dimensional vector space, it does not matter what norm
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we de�ne on the space or whether we instead impose the weak or weak∗ topology on

the space, we will always end up with the usual topology on Rn or Cn. We will also

have that all of our linear operators are matrices which are automatically continuous.

For in�nite-dimensional vector spaces, di�erent norms will potentially produce dif-

ferent topologies giving us a seemingly endless list of possible normed vector spaces

to study. Further, we can impose the weak topology and (when applicable) weak∗

topology on these same normed spaces to provide us with an entirely di�erent topo-

logical space to consider. To illustrate the richness of topological vector spaces and

usefulness of considering di�erent topologies on the same vector space, consider the

dual X∗ of an in�nite-dimensional normed space X. While we saw in Exercise 8.7.10

that the closed unit ball in X∗, equipped with the operator norm, is not compact.

The closed unit ball in X∗ is compact, if we equip X∗ with the weak∗ topology.

Theorem 8.7.12. (Alaoglu's Theorem) Let (X, ∥ · ∥) be a normed vector space

over the �eld K. Then the closed unit ball of X∗ is compact with respect to the weak∗

topology.

Proof. Consider the set Z =
∏

x∈X BK(0, ∥x∥) with the product topology. By Ty-

chono�'s Theorem (Theorem ??), the set Z is compact. Note that for any f ∈ Z,

we have that |f(x)| ≤ ∥x∥, for all x ∈ X. The elements of Z are not necessarily

linear though. Thus, the elements of BX∗(0, 1) are precisely the elements of Z which

are linear. Also, we saw in Chapter 4 that the product topology is precisely the

topology of pointwise convergence and we know the weak∗ topology on X∗ is also

the topology of pointwise convergence. Thus, the weak∗ topology on BX∗(0, 1), as a

subspace of Z, is precisely the topology of pointwise convergence. Thus, it su�ces

to show that BX∗(0, 1) is closed with respect to pointwise convergence. Then, by

Exercise ??, we have that BX∗(0, 1) is compact. Let (fλ)λ∈Λ be a net in BX∗(0, 1)

such that fλ
w∗
−→ f , where f ∈ X∗. We know that f ∈ Z, since Z is compact. Thus,

it su�ces to show that f is linear. Let x1, x2 ∈ X and let α ∈ K. Since fλ
w∗
−→ f , we
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have that fλ(x1)→ f(x1), fλ(x2)→ f(x2), and fλ(x1 + αx2)→ f(x1 + αx2). Thus,

f(x1 + αx2) = lim
λ→∞

fλ(x1 + αx2)

= lim
λ→∞

(fλ(x1) + αfλ(x2))

= lim
λ→∞

fλ(x2) + α lim
λ→∞

fλ(x2)

= f(x1) + αf(x2).

Thus, f is linear and so BX∗(0, 1) is a compact set with respect to the weak∗ topology.
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