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14 CHAPTER 7. METRIC SPACES REVISITED

Let us �rst recall everything that we have learned about metric spaces since Chapter

2. Let (X, d) be a metric space.

In Chapter 3, we saw that β = {Bd(x, r)|x ∈ X, r > 0} is a base for a topology on

X which we refer to as the topology on X induced by d. Although, admittedly, we

always assumed this is the topology that we are using on a metric space so we often

omitted this language. We will continue to do so in the remaining chapters.

In Chapter 4, we saw that if A ⊆ X, then the subspace topology on A is precisely

the topology on A induced by the metric d0, where d0 = d|A×A.

In Chapter 5, we proved that all metric spaces are �rst countable so we can use

sequences to show sets are open or closed, or to show that functions are continuous.

In Chapter 6, we proved that all metric spaces are Hausdor� spaces (which implies,

among other things, that convergent sequences have unique limits). We also saw that

compact metric spaces must be closed and bounded and that sequential compactness

is equivalent to compactness.

In this chapter, we want to investigate more properties of metric spaces and look at

some important theorems about metric spaces.

7.1 Complete Metric Spaces

De�nition 7.1.1. Let (X, d) be a metric space and let (xn)
∞
n=1 be a sequence in X.

We say the sequence (xn)
∞
n=1 is a Cauchy sequence if, for all ϵ > 0, there exists

N ∈ Z+ such that, if n,m ≥ N , then d(xn, xm) < ϵ.

Intuition tells us that Cauchy sequences are very much related to convergent se-

quences. Are they the same thing? Surely they are not, or we would not have

wasted our time with an unnecessary de�nition. The next theorem tells us that
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Cauchy sequences are more general than convergent sequences.

Theorem 7.1.2. Every convergent sequence in a metric space is a Cauchy sequence.

Proof. Let (X, d) be a metric space and let (xn)
∞
n=1 be a convergent sequence. Thus,

there exists x ∈ X such that xn
d−→ x. Let ϵ > 0. Since xn

d−→ x, there exists N ∈ Z+

such that, for all n ≥ N , we have d(xn, x) <
ϵ
2
. Thus, for n,m ≥ N , we have

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ϵ

2
+

ϵ

2
= ϵ

which completes the proof.

As mentioned above, while convergent sequences are Cauchy sequences, not all

Cauchy sequences are convergent as the next few examples illustrate.

Example 7.1.3. (i) Consider the interval X = (0,∞) with the usual metric on

R. De�ne the sequence (xn)
∞
n=1 by xn = 1

n
for all n ∈ Z+. Then (xn)

∞
n=1 is a

Cauchy sequence. Indeed, let ϵ > 0. Pick N > 1
ϵ
. Then, for n,m ≥ N , assume,

without loss of generality, that n ≥ m. Then,

d(xn, xm) =

∣∣∣∣ 1n − 1

m

∣∣∣∣ = n−m

nm
≤ n

nm
=

1

m
≤ 1

N
< ϵ.

However, (xn)
∞
n=1 is not convergent as there exists no x ∈ X such that xn

d−→ x.

(ii) Consider X = Q and de�ne the sequence (xn)
∞
n=1 in X by

x1 = 1 , x2 = 1.4 , x3 = 1.41 , x4 = 1.414 , etc.

where we remind the reader that
√
2 = 1.41421356 . . . . Then it is easy to check

that (xn)
∞
n=1 is a Cauchy sequence. Indeed, given ϵ > 0, pick N ∈ Z+ such that

1
10N−1 < ϵ. Let n,m ≥ N . Without loss of generality, suppose n ≥ m. Then,
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for some digit d,

d(xn, xm) ≤ d(xm, xm+1) ≤
d

10m
≤ d

10N
≤ 1

10N−1
< ϵ.

Again, though, there exists no x ∈ Q such that xn
d−→ x.

(iii) Consider X = R and de�ne a metric d on R by d(x, y) = |e−x − e−y|. Then the

sequence (xn)
∞
n=1 de�ned by xn = n for all n ∈ Z+ is a Cauchy sequence which

does not converge. The details are left as a following exercise.

Exercise 7.1.4. Let X = R and de�ne a metric d on R by d(x, y) = |e−x − e−y|.
De�ne the sequence (xn)

∞
n=1 in X by xn = n for all n ∈ Z+. First, prove that (xn)

∞
n=1

is Cauchy. Then, prove that there exists no x ∈ X such that xn
d−→ x.

As the reader perhaps noticed, examples (i) and (ii) above feel a bit cheap. Of course,

we could always take a convergent sequence in R, de�ne the usual metric d on a set

A which contains the sequence but does not contain the limit of the sequence. We

would then produce a metric space (A, d) which has a Cauchy sequence which does

not converge (simply by omitting its limit from A). In this case, the metric space

(A, d) has Cauchy sequences which don't converge simply because we omitted their

limits. That is, the set A just wasn't made big enough or isn't complete. This is

the intuition behind the next de�nition. Of course, the situation is actually more

complicated than this as Example (iii) illustrates. There we have a Cauchy sequence

where no obvious limit is being omitted from R. In examples (i) and (ii) we are also

getting ahead of ourselves slightly as the need for Cauchy sequences in Q to converge

is what lead to one of the original de�nitions of R (more on this later).

De�nition 7.1.5. Let (X, d) be a metric space. If every Cauchy sequence in (X, d)

converges, then we say (X, d) is complete or refer to (X, d) as a complete metric

space.

For those who have taken an abstract algebra course, completeness of metric spaces
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for analysts is somewhat analogous to operations being closed for algebraic structures.

An algebraic structure can be di�cult to study when we add or multiply two elements

and the result is no longer within the structure. A similar situation is true in analysis.

Since sequences are such important tools for analysts, having analytic structures

where the limits of sequences, in some sense, fall outside of our structure, is not

preferred.

We will start our investigation of complete metric spaces by �rst proving R with the

usual metric is complete. First, we need a lemma.

Lemma 7.1.6. Let (X, d) be a metric space and let (xn)
∞
n=1 be a sequence in X. If

(xn)
∞
n=1 is a Cauchy sequence, then (xn)

∞
n=1 is bounded.

Proof. Let (xn)
∞
n=1 be a Cauchy sequence in X. Then there exists N ∈ Z+ such

that, for all n,m ≥ N , we have that d(xn, xm) < 1. In particular, for all m ≥ N , we

have that d(xN , xm) < 1. Now, let r = max{d(xN , xk)| k = 1, . . . , N − 1}+ 1. Then,

{xn|n ∈ Z+} ⊆ Bd(xN , r) and so (xn)
∞
n=1 is bounded.

Theorem 7.1.7. (Cauchy Criterion) Let d be the usual metric on Rn. Then

(Rn, d) is a complete metric space.

Proof. We must prove that given a Cauchy sequence (xn)
∞
n=1, there exists some x ∈

Rn such that xn → x. To this end, let (xn)
∞
n=1 be a Cauchy sequence in Rn. From

Lemma 7.1.6, we have that (xn)
∞
n=1 is bounded. Thus, by The Bolzano-Weierstrass

Theorem (see Theorem ??), the sequence (xn)
∞
n=1 has a convergent subsequence

(xnk
)∞k=1. Hence, there exists x ∈ Rn such that xnk

→ x. Our goal is to show that

actually (xn)
∞
n=1 converges to x.

Let ϵ > 0. Since (xn)
∞
n=1 is Cauchy, there exists N ∈ Z+ such that, for all n,m ≥ N ,

we have that d(xn, xm) <
ϵ
2
. Since xnk

→ x, there exists K ∈ Z+ such that, for all

k ≥ K, we have d(xnk
, x) < ϵ

2
.
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Since (nk)
∞
k=1 is a strictly increasing sequence, there exists k0 ∈ Z+ such that nk0 ≥

N . Pick k0 large enough so that k0 ≥ K. Then, for n ≥ N ,

d(xn, x) ≤ d(xn, xnk0
) + d(xnk0

, x)

<
ϵ

2
+ d(xnk0

, x) since n, nk0 ≥ N

<
ϵ

2
+

ϵ

2
since k0 ≥ K

= ϵ.

Thus, xn → x and so (xn)
∞
n=1 is a convergent sequence.

If we investigate the proof above, there is nothing we used about the metric space

(Rn, d) speci�cally besides The Bolzano-Weierstrass Theorem. Thus, if a general

metric space has the property that every bounded sequence has a convergent subse-

quence, then it must be complete. This gives us the following corollary.

Corollary 7.1.8. Let (X, d) be a metric space. Suppose every bounded sequence in

X has a convergent subsequence. Then (X, d) is a complete metric space.

Proof. The proof is a following exercise.

Exercise 7.1.9. Prove Corollary 7.1.8. Hint: Follow the proof of Theorem 7.1.7.

The next proposition is fairly obvious but it is used quite often so it is worth giving

formally. Recall that for a metric space (X, d) and a subset A of X, the subspace

topology on A is the same as the topology generated by d|A×A.

Proposition 7.1.10. Let (X, d) be a complete metric space and let A ⊆ X. If A is

closed, then (A, d|A×A) is a complete metric space.

Proof. Let (xn)
∞
n=1 be a Cauchy sequence in A. We want to show (xn)

∞
n=1 converges

to some x ∈ A. Since (xn)
∞
n=1 is Cauchy in A, then it is also Cauchy in X. Since
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(X, d) is a complete metric space, there exists x ∈ X such that xn
d−→ x. Since

(xn)
∞
n=1 is a sequence in A, we have that x is a limit point of A. Since A is closed,

we then have that x ∈ A. Therefore, (A, d|A×A) is complete.

As we discussed after Examples 7.1.3, often times, a metric space is not complete

simply because we omitted some of the limit points from the space. If our metric

space is a subspace of a complete metric space, then Proposition 7.1.10 gives us an

easy make to turn our metric space into a complete metric space by taking the closure.

To be precise, if (X, d) is a complete metric space and A ⊆ X, while (A, d|A×A) might

not be complete, (A, d|A×A) is complete and (A, d|A×A) is a subspace of (A, d|A×A).

For instance, in Example 7.1.3, part (i), we saw that X = (0,∞), with the usual

metric, is not complete. It is, however, a subspace of the complete metric space R
with the usual metric. Thus, X = [0,∞) is a complete metric space which contains

X. Similarly, in part (ii) of Example 7.1.3, we saw that Q with the usual metric

was not complete. It is, however, a subspace of the complete metric space R with

the usual metric. Proposition 7.1.10 then tells us that Q is a complete metric space

containing Q. In this case though, we have to include all of R since Q = R.

If we examine part (iii) of Example 7.1.3 though, where we de�ned the metric d on R
by d(x, y) = |e−x − e−y|, there is no obvious complete metric space which has (R, d)
as a subspace. Can we still �nd a complete metric space (X, d̂) which contains (R, d)
as a subspace (and so we would need d = d̂|R×R)? Further, would X = Rd̂

as it did

in parts (i) and (ii)? Our next goal is to answer these questions. We �rst have to

discuss isometries between metric spaces.

De�nition 7.1.11. Let (X, d1) and (Y, d2) be metric spaces and let f : (X, d1) →
(Y, d2). We say f is an isometry if

d2(f(x1), f(x2)) = d1(x1, x2) , for all x1, x2 ∈ X.
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An informal way to de�ne an isometry between metric spaces is to say that it is a

function which preserves the distance between two points. Having a bijective isom-

etry between two metric spaces is a much stronger property than having a homeo-

morphism between the metric spaces when we view the metric spaces as topological

spaces whose topologies are generated by their respective metrics. This is the topic

of the next proposition.

Proposition 7.1.12. Let (X, d1) and (Y, d2) be metric spaces and let f : (X, d1) →
(X, d2). If f is a bijective isometry, then (X, d1) ∼= (Y, d2).

Proof. Let f : (X, d1) → (Y, d2) be a bijective isometry. We want to show f is also a

homeomorphism. We already have that f is a bijection, so it su�ces to prove f and

f−1 are continuous.

To show f is continuous, we will use Theorem ??. Let (xn)
∞
n=1 be a sequence in X

and suppose xn → x, for some x ∈ X. Let ϵ > 0. Since xn → x, there exists N ∈ Z+

such that, for all n ≥ N , we have that d1(xn, x) < ϵ. Then, for n ≥ N ,

d2(f(xn), f(x)) = d1(xn, x) < ϵ.

Thus, f(xn) → f(x).

Similarly, to show f−1 is continuous, let (yn)
∞
n=1 be a sequence in Y such that yn → y,

for some y ∈ Y . Since f is onto, there exists xk ∈ X such that f(xk) = yk for

all k ∈ Z+ and there exists x ∈ X such that f(x) = y. We wish to show that

f−1(yn) → f−1(y). That is, we wish to show f−1(f(xn)) → f−1(f(x)), i.e., xn → x.

Let ϵ > 0. Since yn → y, there exists N ∈ Z+ such that, for all n ≥ N , we have

d2(yn, y) < ϵ. Then, for n ≥ N ,

d1(xn, x) = d2(f(xn), f(x)) = d(yn, y) < ϵ

and so xn → x.
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Therefore, f is a homeomorphism between (X, d1) and (Y, d2).

Notice something we showed in the proof above was that if f is an isometry then f

is continuous. We will give this as a corollary.

Corollary 7.1.13. Let (X, d1) and (Y, d2) be metric spaces. If f : (X, d1) → (Y, d2)

is an isometry, then f is continuous.

De�nition 7.1.14. Let (X, d1) and (Y, d2) be metric spaces. If there exists a bijective

isometry from (X, d1) to (Y, d2), we say (X, d1) and (Y, d2) are isometric and we

write (X, d1) ≡ (Y, d2).

We this notation, we can now restate Proposition 7.1.12 as follows: If (X, d1) and

(Y, d2) are metric spaces and (X, d1) ≡ (Y, d2), then (X, d1) ∼= (Y, d2).

It's rather obvious but it is worth pointing out, we use the symbol ≡ to denote two

spaces being isometric because ≡ de�nes an equivalence relation on the collection of

all metric spaces.

Metric spaces being isometric is the metric space analogue to isomorphic groups or

rings in abstract algebra or homeomorphic topological spaces in general topology.

That is to say, for all intents and purposes, isometric metric spaces are essentially

the same mathematical object if we consider only their metric space properties.

The proposition above tells us that isometric metric spaces will also be essentially

the same mathematical object if we consider only their topological properties as

well.Thus, any topological property which is preserved by homeomorphisms is also

preserved by bijective isometries. The next exercise illustrates that properties speci�c

to metric spaces are preserved by bijective isometries.

Exercise 7.1.15. Let (X, d1) and (Y, d2) be isometric metric spaces. If (X, d1) is

complete, then (Y, d2) is complete.
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Notice that an isometry (not necessarily bijective) is automatically injective (this is

a following exercise), thus, if f : (X, d1) → (Y, d2) is an isometry, then f : (X, d1) →
(f(X), d2|f(X)×f(X)) is a bijective isometry, and so, (X, d1) ≡ (f(X), d2|f(X)×f(X)),

where (f(X), d2|f(X)×f(X)) is a subspace of (Y, d2). Hence, (X, d1) is essentially a

subspace of (Y, d2). We often summarize this fact by simply saying that the metric

space (X, d1) embeds isometrically into the metric space (Y, d2). Let us formalize this

language in the next de�nition once we give the above mentioned exercise.

Exercise 7.1.16. Let (X, d1) and (Y, d2) be metric spaces. If f : (X, d1) → (Y, d2)

is an isometry, then f is injective.

De�nition 7.1.17. Let (X, d1) and (Y, d2) be metric spaces. If there exists an

isometry f : (X, d1) → (Y, d2), then we say (X, d1) embeds isometrically into the

metric space (Y, d2) and we call the map f an isometric embedding of (X, d1) into

(Y, d2).

Just to reiterate what was said earlier, if (X, d1) embeds isometrically into (Y, d2),

then this means (X, d1) is isometric to a subspace of (Y, d2) (speci�cally, the subspace

(f(X), d2|f(X)×f(X))).

Now, to return to our question from earlier. That is, if we have a metric space

(X, d1) which is not complete and is not contained in an obvious complete metric

space, can we �nd a way to "complete" the metric space (X, d1) anyway? The

isometric embeddings give us one way to do this. If we have an isometric embedding

f : (X, d1) → (Y, d2), where (Y, d2) is a complete metric space, then we can identify

the metric space (X, d1) with the metric space (f(X), d2|f(X)×f(X)) and then we can

"complete" (X, d1) by considering it as a subspace of (f(X), d2|f(X)×f(X)) which is

a complete metric space since it is a closed subspace of (Y, d2). This leads us to the

following de�nition.

De�nition 7.1.18. Let (X, d1) be a metric space and let (Y, d2) be a complete metric

space. If f : (X, d1) → (Y, d2) is an isometric embedding of (X, d1) into (Y, d2), then
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the subspace f(X), with the subspace topology, is called the completion of (X, d1).

From our previous discussions, we can now say that if (X, d) is a metric space which

embeds isometrically, via the isometric embedding f , into a complete metric space,

then we can complete X by identifying it with f(X) (which it is isometric to) and

then take the closure of f(X). So, we now have a way to complete a metric space if

we have an isometric embedding of that metric space into a complete metric space.

Thus, the remaining question is, "Can any metric space be isometrically embedded

into a complete metric space?" The answer is "yes," as the next theorem shows. We

�rst need a lemma.

Lemma 7.1.19. Let (X, d) be a metric space and suppose A is a dense subset of X.

If every Cauchy sequence in A converges to an element of X, then (X, d) is complete.

Proof. Let (X, d) be a metric space and let A ⊆ X such that A = X. Further,

suppose that every Cauchy sequence in A converges to an element of X. Let (xn)
∞
n=1

be a Cauchy sequence in X.

Let n ∈ Z+. Since A = X, there exists an ∈ A such that d(an, xn) <
1
n
. Thus, we

have de�ned a sequence (an)
∞
n=1. We want to show (an)

∞
n=1 is Cauchy. To this end,

let ϵ > 0. Since (xn)
∞
n=1 is Cauchy, there exists N0 ∈ Z+ such that, for all n,m ≥ N0,

we have that d(xn, xm) < ϵ
3
. Pick N ∈ Z+ such that N ≥ N0 and N ≥ 3

ϵ
. Let

m,n ≥ N . Then,

d(an, am) ≤ d(an, xn) + d(xn, xm) + d(xm, am)

<
1

n
+

ϵ

3
+

1

m

≤ 1

N
+

ϵ

3
+

1

N

<
ϵ

3
+

ϵ

3
+

ϵ

3

= ϵ
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Thus, (an)
∞
n=1 is Cauchy. By our assumption, there exists x ∈ X such that an → x.

To �nish the proof, we want to show that xn → x.

Let ϵ > 0. Since an → x, there exists N0 ∈ Z+ such that, for all n ≥ N0, we have

that d(an, x) <
ϵ
2
. Pick N ∈ Z+ such that N ≥ N0 and N ≥ 2

ϵ
. Then, for n ≥ N ,

d(xn, x) ≤ d(xn, an) + d(an, x) <
1

N
+

ϵ

2
<

ϵ

2
+

ϵ

2
= ϵ.

Hence, xn → x and so (X, d) is complete.

Theorem 7.1.20. Let (X, d1) be a metric space. Then there exists a complete metric

space (Y, d2) and an isometric embedding f : (X, d1) → (Y, d2). Further, f(X) is

dense in Y .

Proof. Let (X, d1) be a metric space. De�ne X̂ to be the set of all Cauchy sequences

in X. De�ne a relation ∼ on X̂ by (xn)
∞
n=1 ∼ (yn)

∞
n=1 if and only if d1(xn, yn) → 0.

Proving ∼ is an equivalence relation on X̂ is a following exercise.

Let [(xn)
∞
n=1] denote the equivalence class of (xn)

∞
n=1 and let Y = X/∼ be the set of

all such equivalence classes. De�ne d2 : Y × Y → R by

d2([(xn)
∞
n=1], [(yn)

∞
n=1]) = lim

n→∞
d1(xn, yn).

We �rst have to prove that d2 is well-de�ned. First, we have to show that given any

[(xn)
∞
n=1], [(yn)

∞
n=1] ∈ Y , we have d2([(xn)

∞
n=1], [(yn)

∞
n=1]) ∈ R. We will do this by �rst

showing the sequence (d1(xn, yn))
∞
n=1 is a Cauchy sequence in R. To this end, let

ϵ > 0. Since (xn)
∞
n=1 is Cauchy, there exists N1 ∈ Z+ such that, for all m,n ≥ N1, we

have that d1(xm, xn) <
ϵ
2
. Similarly, since (yn)

∞
n=1 is Cauchy, there exists N2 ∈ Z+

such that, for all m,n ≥ N2, we have d1(ym, yn) <
ϵ
2
. Let N ≥ max{N1, N2}. Then,

for n,m ≥ N , we have

d1(xn, yn) ≤ d1(xn, xm) + d1(xm, ym) + d1(ym, yn)



7.1. COMPLETE METRIC SPACES 25

so,

d1(xn, yn)− d1(xm, ym) ≤ d1(xn, xm) + d1(ym, yn).

Similarly,

d1(xm, ym) ≤ d1(xm, xn) + d1(xn, yn) + d1(yn, ym),

so,

d1(xm, ym)− d1(xn, yn) ≤ d1(xn, xm) + d1(ym, yn)

and thus,

|d1(xn, yn)− d1(xm, ym)| ≤ d1(xn, xm) + d1(ym, yn) <
ϵ

2
+

ϵ

2
= ϵ.

Hence, (d1(xn, yn))
∞
n=1 is Cauchy in R. Since R is complete, there exists r ∈ R such

that d1(xn, yn) → r. Thus,

d2([(xn)
∞
n=1], [(yn)

∞
n=1]) = lim

n→∞
d1(xn, yn) = r ∈ R.

Next, to �nish showing d2 is well-de�ned, given (x′
n)

∞
n=1 ∈ [(xn)

∞
n=1] and (y′n)

∞
n=1 ∈

[(yn)
∞
n=1], we need

lim
n→∞

d1(x
′
n, y

′
n) = lim

n→∞
d1(xn, yn).

Since (x′
n)

∞
n=1 ∈ [(xn)

∞
n=1], we have that d(x

′
n, xn) → 0 and, since (y′n)

∞
n=1 ∈ [(yn)

∞
n=1]

, we have d1(y
′
n, yn) → 0. So,

lim
n→∞

d1(x
′
n, y

′
n) ≤ lim

n→∞
(d1(x

′
n, xn) + d1(xn, yn) + d1(yn, y

′
n)) = lim

n→∞
d1(xn, yn).

A symmetric argument shows

lim
n→∞

d1(xn, yn) ≤ lim
n→∞

d1(x
′
n, y

′
n)

and so,

lim
n→∞

d1(xn, yn) = lim
n→∞

d1(x
′
n, y

′
n).
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Therefore, d2 is well-de�ned. To verify d2 is a metric on Y is a following exercise.

Now, de�ne h : X → Y by h(x) = [(x)∞n=1] where (x)
∞
n=1 = (x, x, x, . . . ). We want to

show h is an isometric embedding. Let x1, x2 ∈ X. Then

d2(h(x1), h(x2)) = d2([(x1)
∞
n=1, [(x2)

∞
n=1]) = lim

n→∞
d1(x1, x2) = d1(x1, x2).

Hence, h is an isometric embedding. Thus, (X, d1) embeds isometrically into (Y, d2).

We now want to show (Y, d2) is complete. We will �rst show that h(X) is dense in Y ,

then show that every Cauchy sequence in h(X) converges to an element of Y . Thus,

by Lemma 7.1.19, we will have that (Y, d2) is complete. First, to show h(X) is dense

in Y , let [(zn)
∞
n=1] ∈ Y . Consider the sequence (h(zk))

∞
k=1 = ([(zk)

∞
n=1])

∞
k=1 in Y . Let

ϵ > 0. Since (zn)
∞
n=1 is Cauchy, there exists N ∈ Z+ such that, for all m,n ≥ N , we

have that d1(zn, zm) <
ϵ
2
. Then, pick K = N and let k ≥ N . Then,

d2 ([(zk)
∞
n=1], [(zn)

∞
n=1]) = lim

n→∞
d1(zk, zn)

≤ lim
n→∞

ϵ

2
for n ≥ K = N

=
ϵ

2

= ϵ.

Thus, h(zn) → [(zn)
∞
n=1] and so h(X) is dense in Y . Now, let (h(xk))

∞
k=1 be a

Cauchy sequence in h(X). Once we show [(xn)
∞
n=1] ∈ Y then we saw above that

h(xk) → [(xn)
∞
n=1].

Let ϵ > 0. Since (h(xk))
∞
k=1 is Cauchy, there exists K ∈ Z+ such that, for all

k,m ≥ K, we have

d1(xk, xm) = lim
n→∞

d1(xk, xm) = d2([(xk)
∞
n=1], [(xm)

∞
n=1]) = d2(h(xk), h(xm)) < ϵ.
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Now, let N = K and suppose n,m ≥ N . Then,

d1(xn, xm) = d2(h(xn), h(xm)) < ϵ.

Thus, [(xn)
∞
n=1] ∈ Y . Therefore, (Y, d2) is complete. We have already shown that

h(X) is dense in Y , so the proof is complete.

Exercise 7.1.21. (i) Prove that the relation ∼ de�ned in the proof of Theorem

7.1.20 is an equivalence relation.

(ii) Prove that d2 de�ned in the proof of Theorem 7.1.20 is a metric on Y .

Thus, every metric space has a completion. Notice in De�nition 7.1.18, that we say

the completion instead. This is due to the fact that any two completions of the same

metric space must be isometric to each other as the next propositon shows. We �rst

need to prove a useful lemma.

Lemma 7.1.22. Let (X, d) be a metric space. Suppose (xn)
∞
n=1 and (yn)

∞
n=1 are

sequences in X such that xn → x and yn → y, for some x, y ∈ X. Then, d(xn, yn) →
d(x, y).

Proof. Since xn → x, there exists N1 ∈ Z+ such that, for all n ≥ N1, we have that

d(xn, x) <
ϵ
2
. Similarly, since yn → y, there exists N2 ∈ Z+ such that, for all n ≥ N2,

we have that d(yn, y) <
ϵ
2
. Let N = max{N1, N2} and suppose n ≥ N . Then,

d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn),

so,

d(xn, yn)− d(x, y) ≤ d(xn, x) + d(y, yn).

Similarly,

d(x, y) ≤ d(x, xn) + d(xn, yn) + d(yn, y),
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so,

d(x, y)− d(xn, yn) ≤ d(x, xn) + d(yn, y).

Thus,

|d(x, y)− d(xn, yn)| ≤ d(x, xn) + d(yn, y) <
ϵ

2
+

ϵ

2
= ϵ.

Thus, d(xn, yn) → d(x, y).

Proposition 7.1.23. Let (X, d1) be a metric space and let (Y, d2) and (Z, d3) be com-

plete metric spaces. Suppose f : (X, d1) → (Y, d2) and g : (X, d1) → (Z, d3) are both

isometric embeddings. Then (f(X), d2|f(X)×f(X)) is isometric to (g(X), d2|g(X)×g(X)).

Proof. Let (X, d1) be a metric space and let (Y, d2) and (Z, d3) be complete metric

spaces. Further, let f : (X, d1) → (Y, d2) and g : (X, d1) → (Z, d3) are both isometric

embeddings. Thus, we have that f : (X, d1) → (f(X), d2|f(X)×f(X)) is a bijective

isometry and g : (X, d1) → (g(X), d3|g(X)×g(X)) is a bijective isometry. Thus,

h = g ◦ f−1 : (f(X), d2|f(X)×f(X)) → (g(X), d3|g(X)×g(X))

is a bijective isometry. De�ne

ĥ : (f(X), d2|f(X)×f(X)) → (g(X), d3|g(X)×g(X))

as follows: for x ∈ f(X), let (xn)
∞
n=1 be a sequence in f(X) such that xn → x (we

can just take xn = x, for all n ∈ Z+, if x ∈ f(X)). Since (xn)
∞
n=1 converges, it is

Cauchy. Since h is an isometry, the sequence (h(xn))
∞
n=1 is a Cauchy sequence in

g(X). Since g(X) is complete, there exists yx ∈ g(x) such that h(xn) → yx. De�ne

ĥ(x) = yx. Note, for x ∈ f(X), we have that ĥ(x) = h(x).

First, we must show ĥ is well-de�ned. To check, let (xn)
∞
n=1 and (zn)

∞
n=1 be sequences

in f(X) such that xn → x and zn → x, for some x ∈ f(X). We want to show that

limn→∞ h(xn) = limn→∞ h(zn). To this end, de�ne the sequence (wn)
∞
n=1 in f(X) by

wn = x(n+1)/2, if n is odd, and wn = zn/2, if n is even. Since xn → x and zn → x,
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we have that wn → x. Hence, (wn)
∞
n=1 is a Cauchy sequence in f(X). Since h is

an isometry, we have that (h(wn))
∞
n=1 is a Cauchy sequence in g(X). Since g(X)

is complete, there exists s ∈ g(X) such that h(wn) → s. Since (h(xn))
∞
n=1 and

(h(zn))
∞
n=1 are subsequences of (h(wn))

∞
n=1, we have that h(xn) → s and h(zn) → s.

Thus, limn→∞ h(xn) = limn→∞ h(zn), and so, ĥ is well-de�ned.

Now, we must show ĥ is a bijective isometry. Let us �rst show that it is an isometry.

Let x, y ∈ f(X) and let (xn)
∞
n=1 and (yn)

∞
n=1 be sequences in f(X) such that xn → x

and yn → y. Then, we have that ĥ(xn) → ĥ(x) and ĥ(yn) → ĥ(y). Then, we have

d3(ĥ(x), ĥ(y)) = lim
n→∞

d3(ĥ(xn), ĥ(yn)) by Lemma 7.1.22

= lim
n→∞

d3(h(xn), h(yn)) since xn, yn ∈ f(X)

= lim
n→∞

d2(xn, yn) since h is an isometry

= d2(x, y) by Lemma 7.1.22

Thus, ĥ is an isometry.

Since ĥ is an isometry, we know that it is injective, so it is left to prove that it is

surjective. Let y ∈ g(X). Then there exists a sequence (yn)
∞
n=1 in g(X) such that

yn → y. Since h is surjective, there exists a sequence (xn)
∞
n=1 in f(X) such that

h(xn) = yn for all n ∈ Z+. Since yn → y, we have that h(xn) → y. Thus, (h(xn))
∞
n=1

is a Cauchy sequence in g(X). Since h is an isometry, (xn)
∞
n=1 is a Cauchy sequence

in f(X). Since f(X) is complete, there exists x ∈ f(X) such that xn → x. Thus,

ĥ(x) = limn→∞ h(xn) = y, and so ĥ is surjective.

Therefore, we have established that ĥ is a bijective isometry and so f(X) and g(X)

are isometric.

Thus, to �nd the completion of a metric space (X, d1), it is enough to �nd an isometric

embedding f of (X, d1) into a complete metric space (Y, d2) such that f(X) is dense
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in Y with respect to d2. Then, (Y, d2) is the completion of (X, d1).

For example, the completion of Q, with the usual metric, is R, with the usual metric.

To see this, de�ne f : Q → R by f(x) = x. Then, obviously, f is an isometric

embedding. Further, R is complete and Q = R. This is one way we de�ne the

set of all real numbers R. It is simply the completion of Q. The details of early

constructions of R can actually be seen in the proof of Theorem 7.1.20 where the

real numbers are technically equivalence classes of Cauchy sequences.

For another example, take the set R with the metric d(x, y) = |e−x − e−y|. We

saw earlier in the section that (R, d) is not complete. Let Y = R ∪ ∞, where ∞
can really be anything which isn't an element of R and de�ne d0(x, y) on Y by

d0(x, y) = |e−x − e−y|, where we de�ne e−∞ = 0. Then (Y, d0) is a complete metric

space. If we de�ne f : R → Y by f(x) = x, then f is an obvious isometric embedding

and R = Y . Hence, Y = R ∪ {∞} is the completion of (R, d).

7.2 Homeomorphic Metric Spaces

We have already seen that isometric metric spaces are homeomorphic. We also

discussed that metric spaces being isometric is a much stronger condition than them

being homeomorphic. In this section, we will �rst investigate weaker conditions

for metric spaces to be homeomorphic. We will then use this new knowledge to

investigate when two di�erent metrics, de�ned on the same set, generate the same

topology.

De�nition 7.2.1. Let (X, d1) and (Y, d2) be two metric spaces and suppose f :

(X, d1) → (Y, d2). We say the function f is Lipschitz if there exists K > 0 such

that

d2(f(x1), f(x2)) ≤ Kd1d(x1, x2) , for all x1, x2 ∈ X.
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Exercise 7.2.2. Let (X, d1) and (Y, d2) be two metric spaces and suppose f :

(X, d1) → (Y, d2) is Lipschitz. Prove f is continuous.

Example 7.2.3. Consider f : R → R de�ned by f(x) = 5x, where R has the usual

metric d. Then, for x1, x2 ∈ R,

d(f(x1), f(x2)) = |f(x1)− f(x2)| = |5x1 − 5x2| = 5|x1 − x2| = 5d(x1, x2)

and so f is Lipschitz. In fact, any di�erentiable function f : (R, d) → (R, d) whose
derivative is bounded (that is, f ′(R) is bounded) is a Lipschitz function. To see why,
simply recall the Mean Value Theorem from your calculus class which states that if

f is continuous on [a, b] and di�erentiable on (a, b), then there exists c ∈ (a, b) such

that

f ′(c) =
f(b)− f(a)

b− a
.

Written di�erently,

(f(b)− f(a)) = f ′(c)(b− a).

Taking absolute values, we then have

|f(b)− f(a)| = |f ′(c)||b− a|.

Thus, if f : (R, d) → (R, d) is di�erentiable, let x1, x2 ∈ R. Without loss of generality,

suppose x1 < x2. Apply the Mean Value Theorem to the interval [x1, x2] to obtain

that

|f(x2)− f(x1)| = |f ′(c)||x2 − x1|.

If the derivative is bounded, then there exists K > 0 such that |f ′(x)| ≤ K for all

x ∈ R. Thus, we have that

d(f(x1), f(x2)) = |f(x2)− f(x1)| = |f ′(c)||x2 − x1| ≤ K|x2 − x1| = Kd(x1, x2).

Hence, the function f is Lipschitz.
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A simple result, which will get us headed in the right direction, is the following:

Proposition 7.2.4. Let (X, d1) and (Y, d2) be metric spaces and let f : (X, d1) →
(Y, d2) be a bijection. If f and f−1 are Lipschitz, then (X, d1) is homeomorphic to

(Y, d2).

Proof. The proof follows immediately from the fact that Lipschitz functions are con-

tinuous. Hence, f is a continuous bijection whose inverse is also continuous. Hence,

f is a homeomorphism.

De�nition 7.2.5. Let (X, d1) and (Y, d2) be metric spaces. We say a function

f : (X, d1) → (Y, d2) is bi-Lipschitz if there exists k,K ∈ (0,∞) such that

kd1(x1, x2) ≤ d2(f(x1), f(x2)) ≤ Kd1(x1, x2) , for all x1, x2 ∈ X.

In the literature, we often see a slightly di�erent de�nition for a bi-Lipschitz function.

There, a function is said to be bi-Lipschitz if there exists K0 > 0 such that

1

K0

d1(x1, x2) ≤ d2(f(x1), f(x2)) ≤ K0d1(x1, x2) , for all x1, x2 ∈ X.

It is not hard to see that the two de�nitions are the same. Obviously, this de�nition

implies the one we have. For the other direction, simply let K0 = max{ 1
k
, K}.

Isometries are a special case of bi-Lipschitz functions where we replace the inequalities

above with equalities, and where k = K = 1.

Exercise 7.2.6. Let (X, d1) and (Y, d2) be metric spaces and suppose f : (X, d1) →
(Y, d2). Prove that if f is bi-Lipschitz, then f is injective.

This leads us to the following theorem.

Theorem 7.2.7. Let (X, d1) and (Y, d2) be metric spaces and suppose f : (X, d1) →
(Y, d2) is bi-Lipschitz. Then (X, d1) and (f(X), d2|f(X)×f(X)) are homeomorphic.
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Proof. Suppose f : (X, d1) → (Y, d2) is bi-Lipschitz. By Exercise 7.2.6, we have

that f is injective. Also, by Exercise 7.2.2, we have that f is continuous. Thus, f :

(X, d1) → (f(X), d2|f(X)×f(X)) is a continuous bijection. Hence, f
−1 : (f(X), d2|f(X)×f(X)) →

(X, d1) is a well-de�ned bijection. It su�ces to show f−1 is continuous. We will do

so by showing f−1 is Lipschitz. Let f(x1), f(x2) ∈ f(X). Since f is bi-Lipschitz,

there exists k > 0 such that kd1(x1, x2) ≤ d2(f(x1), f(x2)). Then,

d1(f
−1(f(x1)), f

−1(f(x2))) = d1(x1, x2) ≤
1

k
d2(f(x1), f(x2)).

Thus, f−1 is Lipschitz and therefore continuous. Hence, (X, d1) and (f(X), d2|f(X)×f(X))

are homeomorphic.

The above theorem tells us that if we have a bi-Lipschitz function f from a metric

space (X, d1) to a metric space (Y, d2), then (X, d1) is homeomorphic to a subspace

of (Y, d2).

Corollary 7.2.8. Let (X, d1) and (Y, d2) be metric spaces and suppose f : (X, d1) →
(Y, d2) is bi-Lipschitz and surjective. Then (X, d1) and (Y, d2) are homeomorphic.

Proof. This follows immediately from Theorem 7.2.7 since f(X) = Y .

We now have one way to show that two metric spaces, while they might not be

isometric, have the same topological structure. We can apply this now to the case

when we have two di�erent metrics de�ned on the same set. First, let us start with

a de�nition which will make the discussion easier.

De�nition 7.2.9. Let X be a set and let d1 and d2 be two metrics on X. Let τ1 be

the topology on X generated by d1 and let τ2 be the topology on X generated by d2.

We say d1 and d2 are equivalent metrics on X if τ1 = τ2.

That is, two metrics de�ned on the same set X are equivalent if they generate the

same topology on X.
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Let X be a set and let d1 and d2 be metrics on X. If d1 and d2 are equivalent,

then it's obvious (X, d1) ∼= (X, d2) since the identity map is a homeomorphism from

(X, d1) to (X, d2). In fact, the identity map being a homeomorphism also implies

the metrics are equivalent, as the next exercise investigates.

Exercise 7.2.10. Let X be a set and let d1 and d2 be metrics on X. Prove that d1

and d2 are equivalent if and only if the identity map f : (X, d1) → (X, d2), de�ned

by f(x) = x, for all x ∈ X, is a homeomorphism.

We can also show that if a metric space is homeomorphic to a topological space, then

the topological space is metrizable.

Exercise 7.2.11. Let (X, d) be a metric space and let (Y, τ) be a topological space.

Prove that if (X, d) is homeomorphic to (Y, τ) then (Y, τ) is metrizable. Hint: Let

f be a homeomorphism from X to Y and de�ne d0 : Y × Y → R by d0(y1, y2) =

d(f−1(y1), f
−1(y2)). First, prove d0 is a metric on Y . Then show that a set is open

with respect to d0 if and only if it is an element of τ).

The next theorem gives a convenient way to think about equivalent metrics, especially

with speci�c examples.

Theorem 7.2.12. Let X be a set and let d1 and d2 be metrics on X. Then d1 and

d2 are equivalent if and only if, for any point x ∈ X and any r > 0, there exists

r1, r2 > 0 such that

Bd1(x, r1) ⊆ Bd2(x, r) and Bd2(x, r2) ⊆ Bd1(x, r).

Proof. Let X be a set and let d1 and d2 be metrics on X. Let τ1 be the topology on

X generated by d1 and let τ2 be the topology on X generated by d2.

Suppose d1 and d2 are equivalent. That is, τ1 = τ2. Let x ∈ X and let r > 0. Since

Bd2(x, r) is an open neighborhood of x in τ2 and τ2 = τ1, we have that Bd2(x, r) is an
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open neighborhood of x in τ1. Since the open balls with respect to d1 form a base for

τ1, there exists r1 > 0 such that Bd1(x, r1) ⊆ Bd2(x, r). Similarly, since Bd1(x, r) is

an open neighborhood of x in τ2, there exists r2 > 0 such that Bd2(x, r2) ⊆ Bd1(x, r).

Now, suppose for any point x ∈ X and any r > 0, there exists r1, r2 > 0 such that

Bd1(x, r1) ⊆ Bd2(x, r) and Bd2(x, r2) ⊆ Bd1(x, r).

We want to show that τ1 = τ2. To this end, let Bd1(x, r) be a basic open set for

τ1, for some x ∈ X and r > 0. Let y ∈ Bd1(x, r). Then there exists ry > 0

such that Bd1(y, ry) ⊆ Bd1(x, r). By our assumption, there exists sy > 0 such that

Bd2(y, sy) ⊆ Bd1(y, ry). Then,

Bd1(x, r) =
⋃

y∈Bd1
(x,r)

Bd2(y, sy) ∈ τ2.

Thus, τ1 ⊆ τ2. A symmetric argument shows τ2 ⊆ τ1.

Example 7.2.13. Consider the taxicab metric d1 on R2. Recall, for (x1, x2), (y1, y2) ∈
R2, the metric d1 is de�ned by

d1((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|.

Further recall that the open ball Bd1(x, r) is an open square rotated by π
2
to form

a diamond shape. Now, let d2 be the usual metric on R2. Thus, its open balls are

open circles. Now, for x ∈ R2 and r > 0, we can easily see that we can �t an open

d2-ball centered at x inside Bd1(x, r). That is, we can draw an open circle, centered

at x, inside the open diamond centered at x. Similarly, given an open circle centered

at x, we can easily draw an open diamond centered at x inside the open circle. Thus

d1 and d2 are equivalent.

Next, we will look at another way to determine whether or not two metrics are equiv-
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alent. While it only provides su�cient conditions for two metrics to be equivalent,

it is often used in applications.

Theorem 7.2.14. Let X be a set and let d1 and d2 be metrics on X. If the identity

function f : (X, d1) → (X, d2) is bi-Lipschitz, then d1 and d2 are equivalent.

Proof. Let the identity map f : (X, d1) → (X, d2) be bi-Lipschitz. By Exercise 7.2.10,

it su�ces to prove f is a homeomorphism. Obviously, f is a bijection. Further, since

f is bi-Lipschitz, we have that f and f−1 are Lipschitz. Thus, by Exercise 7.2.2, the

functions f and f−1 are continuous. Thus, f is a homeomorphism.

The following corollary simply combines the de�nition for bi-Lipschitz with the above

theorem but it has the advantage of avoiding some terminology and it is often how

we show two metrics are equivalent.

Corollary 7.2.15. Let X be a set and let d1 and d2 be metrics on X. If there exists

k,K > 0 such that

kd1(x1, x2) ≤ d2(x1, x2) ≤ Kd1(x1, x2) , for all x1, x2 ∈ X,

then d1 and d2 are equivalent.

Proof. Follows immediately from the de�nition of bi-Lipschitz and Theorem 7.2.14.

7.3 Baire Category Theorem

The Baire Category Theorem has many important applications in analysis. One

way to formulate the statement of the theorem is that, in a complete metric space,

the countable intersection of open dense sets must also be dense. The key word in
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this statement is "open." For example, Q and R \ Q are both dense in R, which is

complete with the usual metric, but Q ∩ (R \ Q) = ∅, which is obviously not dense

in R. But, Q and R \ Q are not open in R so this is not a counterexample to the

theorem.

The reason the theorem is called The Baire "Category" Theorem is because of how

Baire originally formulated the statement. Let (X, d) be a metric space. We say a

subset A of X is nowhere dense in X if the interior of its closure is empty. That

is, A is nowhere dense if (A)o = ∅. We say a subset of X is of the �rst category if

it can be written as a countable union of nowhere dense sets. A subset of X is said

to be of the second category if it is not of the �rst category. With this language,

The Baire Category Theorem can be stated as follows: In a complete metric space,

every nonempty open subset is of the second category. The reader is asked to prove

the equivalence of the two formulations of the theorem in the following exercise.

Exercise 7.3.1. Prove that the two formulations of The Baire Category Theorem

given above are equivalent. That is, prove the countable intersection of open dense

sets is dense if and only if every nonempty open subset is of the second category.

Hint: First prove that if A is nowhere dense, then Ac is dense. Also, a nowhere

dense set A is not necessarily closed but A is certainly closed. The remainder of the

proof relies solely on set operation identities.

It should be mentioned, the categories discussed by Baire have nothing to do with

categories as they are de�ned in the �eld of mathematics called Category Theory.

Before proving Baire's theorem, we �rst need a de�nition and to prove a di�erent

theorem called The Cantor Intersection Theorem.

De�nition 7.3.2. Let (X, d) be a metric space. For any subset A of X, we de�ne

the diameter of A by

diam(A) = sup{d(x, y)|x, y ∈ A}
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if A is bounded and diam(A) = ∞ if A is not bounded.

A quick exercise is in order to prove that the de�nition of the diameter of a set is

well-de�ned.

Exercise 7.3.3. Let (X, d) be a metric space and let A be a subset of X. Then

diam(A) < ∞ if and only if A is bounded.

We are now ready to prove The Cantor Intersection Theorem.

Theorem 7.3.4. (Cantor Intersection Theorem) Let (X, d) be a complete metric

space and let (Cn)
∞
n=1 be a sequence of nonempty closed subsets of X such that Ck ⊇

Ck+1, for all k ∈ Z+. If diam(Cn) → 0, then ∩∞
n=1Cn = {x}, for some x ∈ X.

Proof. Since each Cn is nonempty, let xn ∈ Cn, for all n ∈ Z+. We �rst want to

show (xn)
∞
n=1 is a Cauchy sequence. Let ϵ > 0. Since diam(Cn) → 0, there exists

N0 ∈ Z+ such that, for all n ≥ N0, we have diam(Cn) < ϵ. Let N = N0 and

let n,m ≥ N . Since Cn ⊆ CN and Cm ⊆ CN , we have that xn, xm ∈ CN , thus,

d(xn, xm) < diam(CN) < ϵ. Hence, (xn)
∞
n=1 is a Cauchy sequence.

Since (X, d) is complete, there exists x ∈ X such that xn → x. Fix k ∈ Z+. Then

(xn)
∞
n=k is a sequence in Ck which also converges to x. Since Ck is closed, we have

that x ∈ Ck. Thus, we have that x ∈ Ck for all k ∈ Z+ and so x ∈ ∩∞
n=1Cn.

It is left to show there exists no y ∈ ∩∞
n=1, where y ̸= x. Suppose so. Then d(x, y) > 0.

Since diam(Cn) → 0, there exists N ∈ Z+ such that diam(CN) < d(x, y). But,

x, y ∈ CN so d(x, y) ≤ diam(CN). This is a contradiction. Thus, ∩∞
n=1Cn = {x}.

We are now ready to prove The Baire Category Theorem.

Theorem 7.3.5. (Baire Category Theorem) Let (X, d) be a complete metric

space. If (Un)
∞
n=1 is a sequence of open dense subsets of X, then ∩∞

n=1Un is dense in

X.
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Proof. Let (X, d) be a complete metric space and let (Un)
∞
n=1 be a sequence of open

desne subsets of X. Let W be a nonempty open set in X. It su�ces to show

W ∩ (∩∞
n=1Un) ̸= ∅, by Exercise ??.

Since U1 is dense in X, we have that W ∩U1 ̸= ∅. Further, W ∩U1 is open, so there

exists x1 ∈ X and 0 < r1 <
1
2
such that Bd(x1, r1) ⊆ W ∩ U1.

Now, we will construct sequences (xn)
∞
n=1 and (rn)

∞
n=1 inductively in the following

way: Suppose we have constructed xk and rk for all k = 2, . . . , n such that

Bd(xk, rk) ⊆ Bd(xk−1, rk−1) ∩ Uk and 0 < rk <
1

2k

and, for k = 1, Bd(x1, r1) ⊆ W ∩ U1 and 0 < r1 <
1
2
. Consider Bd(xn, rn) ∩ Un+1. It

is nonempty, so there exists xn+1 ∈ Bd(xn, rn) ∩ Un+1. Further, it is open, so there

exists 0 < rn+1 <
1

2n+1 such that Bd(xn+1, rn+1) ⊆ Bd(xn, rn) ∩ Un+1. Thus, we have

constructed sequences (xn)
∞
n=1 and (rn)

∞
n=1 such that

(i) Bd(xn+1, rn+1) ⊆ Bd(xn, rn) ∩ Un+1 for all n ∈ Z+, and Bd(x1, r1) ⊆ W ∩ U!,

and

(ii) 0 < rn < 1
2n
, for all n ∈ Z+.

Thus, we have a sequence of closed sets (Bd(xn, rn))
∞
n=1 such that rn → 0. Hence,

diam(Bd(xn, rn)) ≤ rn → 0. Further, for all n ∈ Z+, we have

Bd(xn+1, rn+1) ⊆ Bd(xn, rn) ⊆ Bd(xn, rn).

So, by The Cantor Intersection Theorem, ∩∞
n=1Bd(xn, rn) = {x}, for some x ∈ X.

Hence, for all n > 1, we have that x ∈ Bd(xn, rn) ⊆ Bd(xn−1, rn−1) ∩ Un, and so

x ∈ Un for all n > 1. Further, x ∈ Bd(x1, r1) ⊆ W ∩ U1 and so we also have that

x ∈ W and x ∈ U1. In all, we now have that x ∈ W and x ∈ Un for all n ∈ Z+.

Thus, x ∈ W ∩ (∩∞
n=1Un) and therefore ∩∞

n=1Un is dense in X.
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As we mentioned, there are many applications of the Baire Category Theorem and

we will see some important ones in the next chapter. One interesting application is

the following exercise.

Exercise 7.3.6. Prove that R2, with the usual metric, cannot be covered by a

countable number of straight lines.

We can generalize the previous exercise to Rn. Speci�cally, we can use the Baire

Category Theorem to show that R3 cannot be covered by a countable union of planes

or we cannot cover Rn by a countable union of "planes" (translated n−1-dimensional

subspaces).

We can also use The Baire Category Theorem to show that the set of all continuous

functions on some closed interval [a, b] which are di�erentiable for at least one point

in [a, b] are of the �rst category in the set of all continuous functions on [a, b] (we

can de�ne a metric on the set of all continuous functions on [a, b] which makes it

a complete metric space). Thus, "most" continuous functions on [a, b] are nowhere

di�erentiable (not di�erentiable at any point in [a, b]).

7.4 Metrics De�ned on Products

Given sets Xi, where i ∈ I, for some index set I, when and how can we de�ne a

metric on
∏

i∈I Xi? Recall from Chapter 5 that RR with the product topology is

nonmetrizable even though R with the usual metric is a metric space. Thus, in

general, we can't expect the product of metric spaces to have a metric which induces

the product topology. In fact, we have the following theorem.

Theorem 7.4.1. Let (X, τi) be a topological space, for all i in some index set I.

The set
∏

i∈I Xi, with the product topology, is metrizable if and only if each (Xi, τi)

is metrizable and Xi is a singleton for all but countably many i ∈ I.
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Proof. Let X =
∏

i∈I Xi.

We will start with the forward direction. Since each Xj is homeomorphic to a sub-

space of X, speci�cally, Xj
∼=

∏
i∈I Yi, where Yi = {xi}, for some xi ∈ Xi, for i ̸= j,

and Yj = Xj, and X is metrizable, we have that Xj is metrizable by Exercise 7.2.11.

Further, since X is metrizable, it must be �rst countable and so there can be, at

most, countably many nonsingleton factors in the product.

For the backwards direction, we can simply disregard the singleton factors and

assume I = Z+ since, if Xik , for k ∈ Z+, denote the nonsingleton factors, then∏
k∈Z+

Xik
∼=

∏
i∈I Xi. Thus, let's just assume I = Z+. Let k ∈ Z+. Then (Xk, τk)

is metrizable, so there exists a metric dk which induces τk. De�ne ρk : Xk ×Xk → R
by ρk(x, y) = min{1, dk(x, y)}. A following exercise asks the reader to show ρk is a

metric which is equivalent to dk. Thus, ρk induces τk as well. The advantage of the

metric ρk is that it has the added property that ρk(x, y) ≤ 1 for all x, y ∈ Xk. Now,

for x, y ∈ X, de�ne

d(x, y) =
∞∑
k=1

ρk(xk, yk)

2k
.

It is fairly straightforward to check that d de�nes a metric on X. What is left to

show is that d induces the product topology on X. To this end, let x ∈ X and let U

be a basic open neighborhood of x with respect to the product topology. Then there

exists n ∈ Z+, k1, . . . , kn ∈ Z+, and ϵ1, . . . , ϵn > 0 such that

U = π−1
k1
(Bρk1

(xk1 , ϵ1)) ∩ π−1
k2
(Bρk2

(xk2 , ϵk)) ∩ · · · ∩ π−1
kn
(Bρkn

(xkn , ϵn)).

Let ϵ = min{ ϵ1
2k1

, ϵ2
2k2

, . . . , ϵn
2kn

}. We want to show that Bd(x, ϵ) ⊆ U . Let y ∈ Bd(x, ϵ).

Then d(x, y) < ϵ and so, for j = 1, . . . , n, we have that

ρkj(xkj , ykj)

2kj
≤ d(x, y) < ϵ ≤ ϵj

2kj

and so ρkj(xkj , ykj) < ϵj. Hence, y ∈ U . This shows that product topology is weaker
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than the topology induced by d.

On the otherhand, given x ∈ X, a basic open neighborhood of x with respect to the

topology induced by d is of the form Bd(x, ϵ), for some ϵ > 0. Pick N ∈ Z+ such

that
∑∞

k=N+1
1
2k

< ϵ
2
and let

U = π−1
1 (Bρ1(x1,

ϵ

2N
)) ∩ π−1

2 (Bρ2(x2,
ϵ

2N
)) ∩ · · · ∩ π−1

N (BρN (xN ,
ϵ

2N
)).

Clearly, U is open with respect to the product topology and x ∈ U . We claim that

U ⊆ Bd(x, ϵ). Let y ∈ U . Then ρk(xk, yk) <
ϵ

2N
, for all k = 1, 2, . . . , N . Then,

d(x, y) =
N∑
k=1

ρk(xk, yk)

2k
+

∞∑
k=N+1

ρk(xk, yk)

2k

<
ϵ

2N

N∑
k=1

1

2N
+

∞∑
k=N+1

1

2k

<
ϵ

2N
N +

ϵ

2

= ϵ

So, y ∈ Bd(x, ϵ). Hence, we also have the topology induced by d is weaker than the

product topology. Therefore, d induces the product topology on X and the proof is

complete.

Exercise 7.4.2. Let (X, d) be a metric space. De�ne ρ : X ×X → R by ρ(x, y) =

min{1, d(x, y)} for all x, y ∈ X. First, prove ρ is a metric on X. Then, show that ρ

is equivalent to d.

For example, the above theorem tells us that Rℵ0 , with the product topology, is

metrizable. It also tells us that for any metric spaces, if there are only countably

many of them, then the product of the metric spaces, with the product topology, is

metrizable. In particular, if there are only �nitely many metric spaces, then their

product, with the product topology, is metrizable.



7.4. METRICS DEFINED ON PRODUCTS 43

What if, though, given a product of metric spaces, we are willing to have metrics

de�ned on the product, or subsets of the product, which induce di�erent topologies

other than the product topology? There are many reasons for wanting to do this.

For example, suppose we have an uncountable product of metric spaces and we are

willing to have a topology other than the product topology in order for the product

space to be metrizable. Or, for example, even though there is a metric on Rℵ0 which

induces the product topology, perhaps we are willing to have a di�erent metric that,

while it doesn't induce the product topology, has nice geometric properties which are

present in applications. In fact, we can take both scenarios a step further. Suppose

we have a product of metrizable spaces and a metric which re�ects properties showing

up in applications. Unfortunately, the metric is not de�ned on the entire product

space. In this scenario, it is sometimes acceptable to simply de�ne the metric on a

subset of the product space where the metric is de�ned.

We could certainly investigate all of these questions through the lense of metric

spaces. For most of them though, the modern context to view them from is that of

topological vector spaces. The next chapter introduces the reader to topological vec-

tor spaces and investigates some of the above questions from a di�erent perspective.
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