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14 CHAPTER 7. METRIC SPACES REVISITED

Let us first recall everything that we have learned about metric spaces since Chapter

2. Let (X, d) be a metric space.

In Chapter 3, we saw that § = {By(x,r)|z € X, r > 0} is a base for a topology on
X which we refer to as the topology on X induced by d. Although, admittedly, we
always assumed this is the topology that we are using on a metric space so we often

omitted this language. We will continue to do so in the remaining chapters.

In Chapter 4, we saw that if A C X, then the subspace topology on A is precisely
the topology on A induced by the metric dy, where dy = d|xa-

In Chapter 5, we proved that all metric spaces are first countable so we can use

sequences to show sets are open or closed, or to show that functions are continuous.

In Chapter 6, we proved that all metric spaces are Hausdorff spaces (which implies,
among other things, that convergent sequences have unique limits). We also saw that
compact metric spaces must be closed and bounded and that sequential compactness

is equivalent to compactness.

In this chapter, we want to investigate more properties of metric spaces and look at

some important theorems about metric spaces.

7.1 Complete Metric Spaces

Definition 7.1.1. Let (X, d) be a metric space and let (x,,)22; be a sequence in X.
We say the sequence (z,)2%, is a Cauchy sequence if, for all ¢ > 0, there exists

N € Z, such that, if n,m > N, then d(x,,z,,) < €.

Intuition tells us that Cauchy sequences are very much related to convergent se-
quences. Are they the same thing? Surely they are not, or we would not have

wasted our time with an unnecessary definition. The next theorem tells us that
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Cauchy sequences are more general than convergent sequences.

Theorem 7.1.2. Every convergent sequence in a metric space is a Cauchy sequence.

Proof. Let (X, d) be a metric space and let (x,,)°2; be a convergent sequence. Thus,
there exists x € X such that x, 4 4. Let e > 0. Since Tn LN x, there exists N € Z
such that, for all n > N, we have d(z,, ) < 5. Thus, for n,m > N, we have

€ €
d(xp, Tm) < d(Tp, z) + d(x, 2,) < 3 + 5=¢

which completes the proof. O]

As mentioned above, while convergent sequences are Cauchy sequences, not all

Cauchy sequences are convergent as the next few examples illustrate.

Example 7.1.3. (i) Consider the interval X = (0,00) with the usual metric on
R. Define the sequence (z,)52;, by x, =  for all n € Zy. Then (z,)32, is a
Cauchy sequence. Indeed, let € > 0. Pick N > % Then, for n,m > N, assume,

without loss of generality, that n > m. Then,

1
- _ = < — ==
nm nm m

d(zp, Tm) = < —<e

1
N

1 1 n—m n
- =

However, (x,,)22, is not convergent as there exists no z € X such that z, 4 .
(ii) Consider X = Q and define the sequence (z,)%°; in X by
rvn=1 , x9o=14 , 2x23=141 , x4,=1414 | etc.

where we remind the reader that /2 = 1.41421356. ... Then it is easy to check
that (x,)5°, is a Cauchy sequence. Indeed, given € > 0, pick N € Z, such that
10N;fl < €. Let n,m > N. Without loss of generality, suppose n > m. Then,
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for some digit d,

<4 1
— 10m T 10M T 10N+t

A(xp, Tm) < ATy Tmg1) < €.

Again, though, there exists no x € Q such that z, 4 1.

(iii) Consider X = R and define a metric d on R by d(z,y) = |e=* — e Y|. Then the
sequence (z,,)9%, defined by x,, = n for all n € Z, is a Cauchy sequence which

does not converge. The details are left as a following exercise.

Exercise 7.1.4. Let X = R and define a metric d on R by d(z,y) = |e”® — e7Y|.
Define the sequence (z,)%; in X by x,, = n for all n € Z, . First, prove that (z,)%°

n=1

is Cauchy. Then, prove that there exists no x € X such that z, < g

As the reader perhaps noticed, examples (i) and (ii) above feel a bit cheap. Of course,
we could always take a convergent sequence in R, define the usual metric d on a set
A which contains the sequence but does not contain the limit of the sequence. We
would then produce a metric space (A, d) which has a Cauchy sequence which does
not converge (simply by omitting its limit from A). In this case, the metric space
(A, d) has Cauchy sequences which don’t converge simply because we omitted their
limits. That is, the set A just wasn’t made big enough or isn’t complete. This is
the intuition behind the next definition. Of course, the situation is actually more
complicated than this as Example (iii) illustrates. There we have a Cauchy sequence
where no obvious limit is being omitted from R. In examples (i) and (ii) we are also
getting ahead of ourselves slightly as the need for Cauchy sequences in QQ to converge

is what lead to one of the original definitions of R (more on this later).

Definition 7.1.5. Let (X, d) be a metric space. If every Cauchy sequence in (X, d)
converges, then we say (X, d) is complete or refer to (X, d) as a complete metric

space.

For those who have taken an abstract algebra course, completeness of metric spaces
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for analysts is somewhat analogous to operations being closed for algebraic structures.
An algebraic structure can be difficult to study when we add or multiply two elements
and the result is no longer within the structure. A similar situation is true in analysis.
Since sequences are such important tools for analysts, having analytic structures
where the limits of sequences, in some sense, fall outside of our structure, is not

preferred.

We will start our investigation of complete metric spaces by first proving R with the

usual metric is complete. First, we need a lemma.

Lemma 7.1.6. Let (X,d) be a metric space and let (2,)5°, be a sequence in X. If

()22, is a Cauchy sequence, then (,)5 is bounded.

Proof. Let (x,)22, be a Cauchy sequence in X. Then there exists N € Z, such
that, for all n,m > N, we have that d(x,,z,,) < 1. In particular, for all m > N, we
have that d(zy, x,,) < 1. Now, let r = max{d(xy,z;)|k =1,..., N —1} + 1. Then,
{zp|n € Z,} C By(xy,r) and so (x,)32, is bounded. O

Theorem 7.1.7. (Cauchy Criterion) Let d be the usual metric on R". Then

(R™,d) is a complete metric space.

o0

o 1, there exists some z €

Proof. We must prove that given a Cauchy sequence (z,,)

R™ such that x,, — =. To this end, let (z,)2%, be a Cauchy sequence in R". From

n=1

Lemma 7.1.6, we have that (z,)%, is bounded. Thus, by The Bolzano-Weierstrass
Theorem (see Theorem ?7), the sequence (z,)7°, has a convergent subsequence

(2, )52 ,- Hence, there exists x € R™ such that z,, — x. Our goal is to show that

)
n=1

actually (z,,)>2, converges to x.

Let € > 0. Since (z,,)%2, is Cauchy, there exists N € Z, such that, for all n,m > N,
we have that d(z,,z,) < §. Since z,, — z, there exists K € Z, such that, for all

k> K, we have d(x,,,r) < 3.
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Since (ng)p2, is a strictly increasing sequence, there exists ko € Z such that ng, >
N. Pick kg large enough so that ky > K. Then, for n > N,

d(wn, ) < d(wn, Tpy,)) + (@0, 7)

€ :
<3 + d(xy,, ) since n,ng, > N
<t ince ko > K
4= since
513 0=
=e.
Thus, z, — = and so (z,)72, is a convergent sequence. O

If we investigate the proof above, there is nothing we used about the metric space
(R™, d) specifically besides The Bolzano-Weierstrass Theorem. Thus, if a general
metric space has the property that every bounded sequence has a convergent subse-

quence, then it must be complete. This gives us the following corollary.

Corollary 7.1.8. Let (X, d) be a metric space. Suppose every bounded sequence in

X has a convergent subsequence. Then (X,d) is a complete metric space.

Proof. The proof is a following exercise. m

Exercise 7.1.9. Prove Corollary 7.1.8. Hint: Follow the proof of Theorem 7.1.7.

The next proposition is fairly obvious but it is used quite often so it is worth giving
formally. Recall that for a metric space (X,d) and a subset A of X, the subspace
topology on A is the same as the topology generated by d|axa.

Proposition 7.1.10. Let (X,d) be a complete metric space and let A C X. If A is

closed, then (A,d|axa) is a complete metric space.

Proof. Let (x,)>, be a Cauchy sequence in A. We want to show (x,,)5°, converges

to some z € A. Since (z,)%, is Cauchy in A, then it is also Cauchy in X. Since
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(X,d) is a complete metric space, there exists x € X such that x, 4 2. Since
(n)52 is a sequence in A, we have that = is a limit point of A. Since A is closed,

we then have that z € A. Therefore, (A, d|ax4) is complete. O

As we discussed after Examples 7.1.3, often times, a metric space is not complete
simply because we omitted some of the limit points from the space. If our metric
space is a subspace of a complete metric space, then Proposition 7.1.10 gives us an
easy make to turn our metric space into a complete metric space by taking the closure.
To be precise, if (X, d) is a complete metric space and A C X, while (A, d| 4 1) might

not be complete, (A, d|5,5) is complete and (A, d|x4) is a subspace of (A, d|%, 7).

For instance, in Example 7.1.3, part (i), we saw that X = (0,00), with the usual
metric, is not complete. It is, however, a subspace of the complete metric space R
with the usual metric. Thus, X = [0, 00) is a complete metric space which contains
X. Similarly, in part (ii) of Example 7.1.3, we saw that Q with the usual metric
was not complete. It is, however, a subspace of the complete metric space R with
the usual metric. Proposition 7.1.10 then tells us that Q is a complete metric space

containing Q. In this case though, we have to include all of R since Q = R.

If we examine part (iii) of Example 7.1.3 though, where we defined the metric d on R
by d(x,y) = |e=* — e~ Y|, there is no obvious complete metric space which has (R, d)
as a subspace. Can we still find a complete metric space (X, g) which contains (R, d)
as a subspace (and so we would need d = d|gxp)? Further, would X = R” as it did
in parts (i) and (ii)? Our next goal is to answer these questions. We first have to

discuss isometries between metric spaces.

Definition 7.1.11. Let (X, d;) and (Y, ds) be metric spaces and let f : (X,d;) —
(Y,ds). We say f is an isometry if

dQ(f(Il), f(fL‘Q)) = dl(fL‘l,ﬂfg) s for all x1,Te € X.
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An informal way to define an isometry between metric spaces is to say that it is a
function which preserves the distance between two points. Having a bijective isom-
etry between two metric spaces is a much stronger property than having a homeo-
morphism between the metric spaces when we view the metric spaces as topological
spaces whose topologies are generated by their respective metrics. This is the topic

of the next proposition.

Proposition 7.1.12. Let (X,d;) and (Y, ds) be metric spaces and let f: (X, d;) —
(X,dy). If f is a bijective isometry, then (X,dy) = (Y, ds).

Proof. Let f: (X, d;) — (Y, dz) be a bijective isometry. We want to show f is also a
homeomorphism. We already have that f is a bijection, so it suffices to prove f and

f~1 are continuous.

To show f is continuous, we will use Theorem ??. Let (2,)5; be a sequence in X
and suppose x,, — x, for some x € X. Let € > 0. Since z,, — z, there exists N € Z_
such that, for all n > N, we have that d;(x,,z) < e. Then, for n > N,

dal(f(2a), f(2)) = d(n, ) < e.

Thus, f(x,) — f(z).

Similarly, to show f~! is continuous, let (y,,)°, be a sequence in Y such that y,, — v,
for some y € Y. Since f is onto, there exists x; € X such that f(zx) = y, for
all k € Z, and there exists € X such that f(z) = y. We wish to show that
fYyn) = f1(y). That is, we wish to show f~1(f(z,)) — f~1(f(2)), i.e., z, — 2.
Let € > 0. Since y,, — vy, there exists N € Z, such that, for all n > N, we have
d>(yn,y) < €. Then, for n > N,

dy(xn, ) = day(f(2n), f(2)) = d(yn, y) <€

and so x,, — .
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Therefore, f is a homeomorphism between (X, d;) and (Y, dy). O

Notice something we showed in the proof above was that if f is an isometry then f

is continuous. We will give this as a corollary.

Corollary 7.1.13. Let (X, dy) and (Y,d2) be metric spaces. If f: (X, dy) — (Y, ds)

1s an tsometry, then f is continuous.

Definition 7.1.14. Let (X, d;) and (Y, d2) be metric spaces. If there exists a bijective
isometry from (X, d;) to (Y,dy), we say (X,d;) and (Y, dy) are isometric and we
write (X, dy) = (Y, do).

We this notation, we can now restate Proposition 7.1.12 as follows: If (X,d;) and
(Y, ds) are metric spaces and (X, d;) = (Y, ds), then (X,d;) = (Y, ds).

I[t’s rather obvious but it is worth pointing out, we use the symbol = to denote two
spaces being isometric because = defines an equivalence relation on the collection of

all metric spaces.

Metric spaces being isometric is the metric space analogue to isomorphic groups or
rings in abstract algebra or homeomorphic topological spaces in general topology.
That is to say, for all intents and purposes, isometric metric spaces are essentially
the same mathematical object if we consider only their metric space properties.
The proposition above tells us that isometric metric spaces will also be essentially
the same mathematical object if we consider only their topological properties as
well. Thus, any topological property which is preserved by homeomorphisms is also
preserved by bijective isometries. The next exercise illustrates that properties specific

to metric spaces are preserved by bijective isometries.

Exercise 7.1.15. Let (X,d;) and (Y,dy) be isometric metric spaces. If (X, d;) is
complete, then (Y, ds) is complete.
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Notice that an isometry (not necessarily bijective) is automatically injective (this is
a following exercise), thus, if f: (X, d;) — (Y, ds) is an isometry, then f: (X,d;) —
(f(X),da|fx)xf(x)) is a bijective isometry, and so, (X,di) = (f(X), d2|rx)xs(x))s
where (f(X),da|fx)xf(x)) is a subspace of (Y,dy). Hence, (X,d;) is essentially a
subspace of (Y, dy). We often summarize this fact by simply saying that the metric
space (X, dy) embeds isometrically into the metric space (Y, ds). Let us formalize this

language in the next definition once we give the above mentioned exercise.

Exercise 7.1.16. Let (X, d;) and (Y, dy) be metric spaces. If f: (X, dy) — (Y, d>)

is an isometry, then f is injective.

Definition 7.1.17. Let (X,d;) and (Y,dy) be metric spaces. If there exists an
isometry f: (X,d;) — (Y, dz), then we say (X, d;) embeds isometrically into the
metric space (Y, ds) and we call the map f an isometric embedding of (X, d;) into
(Y, ds).

Just to reiterate what was said earlier, if (X, d;) embeds isometrically into (Y, d»),

then this means (X, d) is isometric to a subspace of (Y, dy) (specifically, the subspace
(f(X), da| sy x £(x)))-

Now, to return to our question from earlier. That is, if we have a metric space
(X, dy) which is not complete and is not contained in an obvious complete metric
space, can we find a way to "complete" the metric space (X,d;) anyway? The
isometric embeddings give us one way to do this. If we have an isometric embedding
f:(X,dy) = (Y,ds), where (Y,dy) is a complete metric space, then we can identify
the metric space (X, d;) with the metric space (f(X), da|f(x)xf(x)) and then we can
"complete" (X, d;) by considering it as a subspace of (f(X), da| 707 77xy) Which s
a complete metric space since it is a closed subspace of (Y, dy). This leads us to the

following definition.

Definition 7.1.18. Let (X, d;) be a metric space and let (Y, dy) be a complete metric
space. If f:(X,d;) — (Y,ds) is an isometric embedding of (X, d;) into (Y, dy), then
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the subspace f(X), with the subspace topology, is called the completion of (X, d;).

From our previous discussions, we can now say that if (X, d) is a metric space which
embeds isometrically, via the isometric embedding f, into a complete metric space,
then we can complete X by identifying it with f(X) (which it is isometric to) and
then take the closure of f(X). So, we now have a way to complete a metric space if
we have an isometric embedding of that metric space into a complete metric space.
Thus, the remaining question is, "Can any metric space be isometrically embedded
into a complete metric space?" The answer is "yes," as the next theorem shows. We

first need a lemma.

Lemma 7.1.19. Let (X, d) be a metric space and suppose A is a dense subset of X.

If every Cauchy sequence in A converges to an element of X, then (X, d) is complete.

Proof. Let (X,d) be a metric space and let A C X such that A = X. Further,
suppose that every Cauchy sequence in A converges to an element of X. Let (z,,)%%,

be a Cauchy sequence in X.

Let n € Z,. Since A = X, there exists a, € A such that d(a,,z,) < % Thus, we
have defined a sequence (a,)%,. We want to show (a,)>, is Cauchy. To this end,
let € > 0. Since (z,,)9°, is Cauchy, there exists Ny € Z such that, for all n,m > N,
we have that d(x,,z,) < §. Pick N € Z; such that N > Ny and N > % Let
m,n > N. Then,

d(an, am) < d(an, Tn) + d(Tn, ) + d(Tm, am)
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Thus, (a,)5, is Cauchy. By our assumption, there exists x € X such that a, — =.

To finish the proof, we want to show that z,, — x.

Let € > 0. Since a,, — z, there exists Ny € Z, such that, for all n > N, we have
that d(an,r) < §. Pick N € Z, such that N > Ny and N > % Then, for n > N,

1 € € €
d <d d — 4+ <-4+ —-—=c¢
(Tn, ) < d(zp, an) + d(an, ) < N + 5 < 5 + 5 €

Hence, x,, — z and so (X, d) is complete. a

Theorem 7.1.20. Let (X, dy) be a metric space. Then there exists a complete metric
space (Y,ds) and an isometric embedding f : (X,dy) — (Y,ds). Further, f(X) is

dense in Y.

Proof. Let (X, d;) be a metric space. Define X to be the set of all Cauchy sequences
in X. Define a relation ~ on X by (2,,)%%, ~ (y,)°2, if and only if d(zn, yn) — O.

Proving ~ is an equivalence relation on X is a following exercise.

Let [(x,)2,] denote the equivalence class of (x,)22; and let Y = X/~ be the set of

all such equivalence classes. Define dy : Y XY — R by

()R], [wn)ia]) = T d(,32)

We first have to prove that ds is well-defined. First, we have to show that given any
[(zn)pZa]s [(Un)oa] €Y, we have da([(2n)5Zy], [(yn)pzy]) € R. We will do this by first
showing the sequence (dy(x,,y,))s, is a Cauchy sequence in R. To this end, let

e > 0. Since (z,)2, is Cauchy, there exists Ny € Z, such that, for all m,n > Ny, we

n=1

n=1
such that, for all m,n > Ny, we have di(ym,yn) < 5. Let N > max{Ni, No}. Then,

for n,m > N, we have

have that di(2y,,r,) < §. Similarly, since (y,);2; is Cauchy, there exists Ny € Z,

d1($m?/n) S dl(xnyxm) + d1($m7ym) + dl(ymayn)
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S0,

di (T, Yn) — d1 (T, Ym) < di(Tn, Tim) + di (Y, Yn)-
Similarly,

Ay (T Ym) < di(Zm, Tn) + di(Tn, Yn) + A1 (Yns Ym),
S0,

dy (T, Ym) = di(Tn, Yn) < di(@n, Tm) + di(Ym, Yn)
and thus,

€ €
|1 (Zn, Yn) — di (T, Ym)| < di(Tn, Tim) + di (Y Yn) < gtg=e

Hence, (di(xn,yn))s, is Cauchy in R. Since R is complete, there exists r € R such
that dy(z,,y,) — r. Thus,

dao([(wn)nal, [(Yn)on]) = nhanolo di(Tp,yn) =7 €R.

Next, to finish showing ds is well-defined, given (2/)°2; € [(x,)22,] and (y,)%°, €
[(yn)22 4], we need

. / AT
lim dy (2, y,) = lim dy (20, yn).

Since ()22, € [(2,)22,], we have that d(z/,,z,) — 0 and, since (y},)5°; € [(yn)52,]

, we have d;(v,,, y,) — 0. So,

n—oo n—oo

A symmetric argument shows

lim di(z,,y,) < lim dy(2),,9.)
n—oo

n—o0

and so,

i dy (a0, ya) = lim dy (], 4;,).
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Therefore, ds is well-defined. To verify d, is a metric on Y is a following exercise.

Now, define h : X — Y by h(z) = [(x)22,] where ()02, = (z,2z,2,...). We want to

n=1

show A is an isometric embedding. Let x1, 29 € X. Then

da(h(z1), h(72)) = da([(71)521, [(T2)024]) = im di(z1, ) = di (21, 22).

n—oo

Hence, h is an isometric embedding. Thus, (X, d;) embeds isometrically into (Y, ds).

We now want to show (Y, dy) is complete. We will first show that h(X) is dense in Y,
then show that every Cauchy sequence in h(X) converges to an element of Y. Thus,
by Lemma 7.1.19, we will have that (Y, dy) is complete. First, to show h(X) is dense
inY, let [(2,)22,] € Y. Consider the sequence (h(zr))52; = ([(z1)52])52, in Y. Let
e > 0. Since (z,)22, is Cauchy, there exists N € Z, such that, for all m,n > N, we

n=1

have that di(zy, zm) < 5. Then, pick K = N and let £k > N. Then,

dy ([(z6)5%1], [(zn)ntr]) = T da (2, 20)

n—oo

< lim -= forn>K =N

Thus, h(z,) — [(2,)0%,] and so h(X) is dense in Y. Now, let (h(zg));2, be a

n=1
Cauchy sequence in h(X). Once we show [(z,)22,] € Y then we saw above that
h(zw) = [(2n)nZil-

n=1

Let € > 0. Since (h(zy))72, is Cauchy, there exists K € Z, such that, for all
k,m > K, we have

(g, ) = Hmdy (2, 2n) = do([(22)721]; [(Fm)nla]) = da(h(@), h(wm)) <€

n—o0
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Now, let N = K and suppose n,m > N. Then,
dy(Tp, ) = do(h(zy), h(xy)) < €.

Thus, [(x,)22,] € Y. Therefore, (Y,dy) is complete. We have already shown that

n=1

h(X) is dense in Y, so the proof is complete. O]

Exercise 7.1.21. (i) Prove that the relation ~ defined in the proof of Theorem

7.1.20 is an equivalence relation.

(ii) Prove that dy defined in the proof of Theorem 7.1.20 is a metric on Y.

Thus, every metric space has a completion. Notice in Definition 7.1.18, that we say
the completion instead. This is due to the fact that any two completions of the same
metric space must be isometric to each other as the next propositon shows. We first

need to prove a useful lemma.

Lemma 7.1.22. Let (X,d) be a metric space. Suppose (1,)5%, and (y,)>2, are
sequences in X such that x, — = and y, — y, for some x,y € X. Then, d(x,,y,) —

d(z,y).

Proof. Since x,, — x, there exists N; € Z, such that, for all n > N;, we have that
d(zn, ) < §. Similarly, since y,, — y, there exists Ny € Z, such that, for all n > Ny,
we have that d(y,,y) < §. Let N = max{N;, N>} and suppose n > N. Then,

AT, Yn) < d(zy, ) +d(2,y) + d(Y, Yn),
S0,
d(xp,yn) — d(z,y) < d(xn, x) + d(y, yn)-

Similarly,
d(ﬂf, y) S d([lf, (L’n) + d(ﬂfn, yn) + d(yna y))
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S0,
d(z,y) = d(@n, yn) < (@, 20) + d(Yn, Y)-
Thus,
|d(z,y) — d(@n, yo)| < d(z,2,) + d(yn,y) < % + g —e
Thus, d(x,, y,) — d(x,y). 0

Proposition 7.1.23. Let (X, d;) be a metric space and let (Y, dy) and (Z,d3) be com-
plete metric spaces. Suppose f: (X, dy) = (Y,ds) and g : (X,dy) — (Z,d3) are both

isometric embeddings. Then (f(X), da| 5y, 70y) @8 isometric to (9(X), da| 5y g0)-

Proof. Let (X, d;) be a metric space and let (Y, dy) and (Z,ds) be complete metric
spaces. Further, let f: (X,dy) — (Y, dy) and g : (X,dy) — (Z,d3) are both isometric
embeddings. Thus, we have that f : (X,d1) = (f(X),ds2|rx)xf(x)) is a bijective
isometry and g : (X,di) = (9(X), ds|g(x)xg(x)) is a bijective isometry. Thus,

h=go fh: (f(X),dolpxyrix)) = (9(X), dslg(x)xg(x))

is a bijective isometry. Define

h: (f<X>7d2‘m><W) - (g( )’d3|MXﬁ)

as follows: for x € f(X), let (z,)52, be a sequence in f(X) such that z,, — x (we

can just take x, = x, for all n € Z,, if v € f(X)). Since (z,)52, converges, it is

o)

o, is a Cauchy sequence in

Cauchy. Since h is an isometry, the sequence (h(z,))

g(X). Since g(X) is complete, there exists y, € g(z) such that h(z,) — y,. Define
ﬁ(x) = y,. Note, for z € f(X), we have that ﬁ(x) = h(x).

First, we must show % is well-defined. To check, let (2,)22; and (2,)5°, be sequences
in f(X) such that x,, — x and 2, — z, for some z € f(X). We want to show that
lim,, o0 h(z,) = limy, o h(2,). To this end, define the sequence (w,)2; in f(X) by

Wy = T(n41)/2, if nis odd, and w, = z,/9, if n is even. Since z,, — x and 2, — =,
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we have that w, — x. Hence, (w,)5, is a Cauchy sequence in f(X). Since h is

an isometry, we have that (h(w,))>2, is a Cauchy sequence in g(X). Since g(X)

is complete, there exists s € g(X) such that h(w,) — s. Since (h(z,))32, and

(h(zn))5o, are subsequences of (h(w,))>,, we have that h(x,) — s and h(z,) — s.

n=1-

Thus, lim,_eo 2(2n) = lim,_ye0 A(2,), and so, & is well-defined.

Now, we must show his a bijective isometry. Let us first show that it is an isometry.

Let z,y € f(X) and let (z,)5, and (y,)72, be sequences in f(X) such that z,, - =
and y, — y. Then, we have that /fz(:vn) — /ﬁ(m) and /ﬂ(yn) — ﬁ(y) Then, we have

ds(h(z), h(y)) = lim ds(h(z), h(yn)) by Lemma 7.1.22
= lim ds(h(zn), h(yn)) since 2, y, € f(X)
= nh—>nolo da (T, Yn) since h is an isometry
= dy(x,y) by Lemma 7.1.22

Thus, h is an isometry.

Since h is an isometry, we know that it is injective, so it is left to prove that it is
surjective. Let y € g(X). Then there exists a sequence (y,)2%, in g(X) such that
Yn — y. Since h is surjective, there exists a sequence (z,)7, in f(X) such that
h(z,) =y, for all n € Z,. Since y, — y, we have that h(z,) — y. Thus, (h(z,))>2,
is a Cauchy sequence in g(X). Since h is an isometry, (x,)5°, is a Cauchy sequence

in f(X). Since f(X) is complete, there exists € f(X) such that z,, — =. Thus,

h(z) = lim, o h(x,) =y, and so B is surjective.

Therefore, we have established that % is a bijective isometry and so f(X) and g(X)

are isometric. O

Thus, to find the completion of a metric space (X, d;), it is enough to find an isometric

embedding f of (X, d;) into a complete metric space (Y, dy) such that f(X) is dense
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in Y with respect to ds. Then, (Y, ds) is the completion of (X, d;).

For example, the completion of Q, with the usual metric, is R, with the usual metric.
To see this, define f : @ — R by f(z) = x. Then, obviously, f is an isometric
embedding. Further, R is complete and Q = R. This is one way we define the
set of all real numbers R. It is simply the completion of Q. The details of early
constructions of R can actually be seen in the proof of Theorem 7.1.20 where the

real numbers are technically equivalence classes of Cauchy sequences.

For another example, take the set R with the metric d(z,y) = |e™® —e7Y]. We
saw earlier in the section that (R,d) is not complete. Let Y = R U oo, where oo
can really be anything which isn’t an element of R and define dy(x,y) on Y by
do(x,y) = |e=® — e Y|, where we define e = 0. Then (Y,dp) is a complete metric
space. If we define f : R — Y by f(z) = x, then f is an obvious isometric embedding
and R =Y. Hence, Y = RU {oc} is the completion of (R, d).

7.2 Homeomorphic Metric Spaces

We have already seen that isometric metric spaces are homeomorphic. We also
discussed that metric spaces being isometric is a much stronger condition than them
being homeomorphic. In this section, we will first investigate weaker conditions
for metric spaces to be homeomorphic. We will then use this new knowledge to
investigate when two different metrics, defined on the same set, generate the same

topology.

Definition 7.2.1. Let (X,d;) and (Y,d;) be two metric spaces and suppose f :
(X,d1) — (Y,d2). We say the function f is Lipschitz if there exists K > 0 such
that

do(f(xy), f(x2)) < Kdyd(zy,29) , for all 1,29 € X,
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Exercise 7.2.2. Let (X,d;) and (Y,dy) be two metric spaces and suppose f :
(X,dy) — (Y,ds) is Lipschitz. Prove f is continuous.

Example 7.2.3. Consider f : R — R defined by f(z) = 5z, where R has the usual

metric d. Then, for x1, 25 € R,

d(f(x1), f(22)) = [f(71) — f(22)| = [521 — Bxo| = 5|21 — 22| = Bdl(21, 72)

and so f is Lipschitz. In fact, any differentiable function f : (R,d) — (R, d) whose
derivative is bounded (that is, f'(R) is bounded) is a Lipschitz function. To see why,
simply recall the Mean Value Theorem from your calculus class which states that if
f is continuous on [a, b] and differentiable on (a,b), then there exists ¢ € (a, b) such
that

Written differently,

Taking absolute values, we then have

|£(0) = f(a)| = [ (0)][b — al.

Thus, if f : (R,d) — (R, d) is differentiable, let x1, 2o € R. Without loss of generality,
suppose x1 < Zz. Apply the Mean Value Theorem to the interval [z1, 5] to obtain
that

|f (2) = fz1)] = [ (O)lJw2 — 2.

If the derivative is bounded, then there exists K > 0 such that |f'(z)| < K for all
x € R. Thus, we have that

d(f(z1), f(x2)) = |f(z2) = f(z1)| = [ (O)l|m2 — 21| < K|z — 21| = Kd(1, 72).

Hence, the function f is Lipschitz.
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A simple result, which will get us headed in the right direction, is the following:

Proposition 7.2.4. Let (X,dy) and (Y, ds) be metric spaces and let f : (X,dy) —
(Y,ds) be a bijection. If f and f~' are Lipschitz, then (X,dy) is homeomorphic to
(Y7 d2)

Proof. The proof follows immediately from the fact that Lipschitz functions are con-
tinuous. Hence, f is a continuous bijection whose inverse is also continuous. Hence,

f is a homeomorphism. O

Definition 7.2.5. Let (X,d;) and (Y,d2) be metric spaces. We say a function
f:(X,dy) — (Y,dy) is bi-Lipschitz if there exists k, K € (0, 00) such that

kd1<xl, SL’Q) S dg(f(.?fl), f(IQ)) S Kdl(ﬂfl, Ig), fOI' all T1,T9 € X.

In the literature, we often see a slightly different definition for a bi-Lipschitz function.

There, a function is said to be bi-Lipschitz if there exists Ky > 0 such that

1
?dl(x17$2) < d2(f($1)a f(%)) < Kodl(xb@) Jor all zy,25 € X.
0

It is not hard to see that the two definitions are the same. Obviously, this definition

implies the one we have. For the other direction, simply let Ky = max{%, K}.

Isometries are a special case of bi-Lipschitz functions where we replace the inequalities

above with equalities, and where k = K = 1.

Exercise 7.2.6. Let (X, d;) and (Y, dy) be metric spaces and suppose f : (X,d;) —
(Y, dy). Prove that if f is bi-Lipschitz, then f is injective.

This leads us to the following theorem.

Theorem 7.2.7. Let (X,dy) and (Y, dy) be metric spaces and suppose f: (X,d;) —
(Y, dy) is bi-Lipschitz. Then (X,dy) and (f(X),da|x)xf(x)) are homeomorphic.
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Proof. Suppose f : (X,d;) — (Y,ds) is bi-Lipschitz. By Exercise 7.2.6, we have

that f is injective. Also, by Exercise 7.2.2, we have that f is continuous. Thus, f :

(X, d1) = (f(X),da|px)xf(x)) is a continuous bijection. Hence, f~: (f(X), d2| f(x)xf(x)) —
(X,dy) is a well-defined bijection. It suffices to show f~! is continuous. We will do

so by showing f~! is Lipschitz. Let f(zy), f(z2) € f(X). Since f is bi-Lipschitz,

there exists k > 0 such that kdi(x1,x2) < da(f(z1), f(x2)). Then,

di(fH(f (1)), fH(f(22))) = di(a1,22) < %(b(f(%)a f(x2)).

Thus, f~! is Lipschitz and therefore continuous. Hence, (X, d;) and (f(X), da|fx)x£(x))

are homeomorphic. O

The above theorem tells us that if we have a bi-Lipschitz function f from a metric
space (X, d;) to a metric space (Y, ds), then (X, d;) is homeomorphic to a subspace
of (}/, dg)

Corollary 7.2.8. Let (X, dy) and (Y, dy) be metric spaces and suppose f: (X, dy) —
(Y, ds) is bi-Lipschitz and surjective. Then (X,dy) and (Y, ds) are homeomorphic.

Proof. This follows immediately from Theorem 7.2.7 since f(X) =Y. O

We now have one way to show that two metric spaces, while they might not be
isometric, have the same topological structure. We can apply this now to the case
when we have two different metrics defined on the same set. First, let us start with

a definition which will make the discussion easier.

Definition 7.2.9. Let X be a set and let d; and d5 be two metrics on X. Let 7; be
the topology on X generated by d; and let 75 be the topology on X generated by ds.

We say d; and dy are equivalent metrics on X if 71 = 7.

That is, two metrics defined on the same set X are equivalent if they generate the

same topology on X.
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Let X be a set and let d; and dy be metrics on X. If d; and dy are equivalent,
then it’s obvious (X, d;) = (X, ds) since the identity map is a homeomorphism from
(X,dy) to (X,dy). In fact, the identity map being a homeomorphism also implies

the metrics are equivalent, as the next exercise investigates.

Exercise 7.2.10. Let X be a set and let d; and dy be metrics on X. Prove that d;
and dy are equivalent if and only if the identity map f : (X, d;) — (X, dz), defined

by f(x) =z, for all x € X, is a homeomorphism.

We can also show that if a metric space is homeomorphic to a topological space, then

the topological space is metrizable.

Exercise 7.2.11. Let (X, d) be a metric space and let (Y, 7) be a topological space.
Prove that if (X, d) is homeomorphic to (Y, 7) then (Y, 7) is metrizable. Hint: Let
f be a homeomorphism from X to Y and define dy : Y XY — R by do(y1,y2) =
d(f~Y(y1), f~ (y2)). First, prove dy is a metric on Y. Then show that a sel is open

with respect to dy if and only if it is an element of T).

The next theorem gives a convenient way to think about equivalent metrics, especially

with specific examples.

Theorem 7.2.12. Let X be a set and let d; and dy be metrics on X. Then dy and
ds are equivalent if and only if, for any point © € X and any r > 0, there exists

ri,r9 > 0 such that
By, (x,r1) C Bg,(x,r) and By, (x,ry) C By, (x,r).

Proof. Let X be a set and let d; and dy be metrics on X. Let 7y be the topology on
X generated by d; and let 75 be the topology on X generated by ds.

Suppose d; and dy are equivalent. That is, /; = 7. Let x € X and let » > 0. Since

By, (x,r) is an open neighborhood of x in 7, and 7 = 71, we have that By, (z,7) is an
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open neighborhood of x in 77. Since the open balls with respect to d; form a base for
71, there exists 71 > 0 such that By, (x,r1) C Bg,(x,r). Similarly, since By, (x,r) is

an open neighborhood of x in 7, there exists ro > 0 such that By, (z,72) C By, (z,7).

Now, suppose for any point x € X and any r > 0, there exists r,75 > 0 such that
By, (z,71) € Bg,(z,7) and By, (x,1m9) C By, (x,1).

We want to show that 7 = 7. To this end, let By (z,7) be a basic open set for
7y, for some x € X and r > 0. Let y € By, (x,7). Then there exists r, > 0
such that By, (y,7,) C B, (z,r). By our assumption, there exists s, > 0 such that
Ba,(y, sy) € Ba,(y,ry). Then,

Bd1 (x, T) = U de (y7 Sy) € To.

yEBdl (CC,’I”)

Thus, 7 C 75. A symmetric argument shows 7 C 7. O

Example 7.2.13. Consider the taxicab metric d; on R?. Recall, for (xq,x3), (y1,92) €
R?, the metric d,; is defined by

di((z1,22), (Y1, 92)) = |71 — y1| + |22 — 92].

Further recall that the open ball By, (7,7) is an open square rotated by 7 to form
a diamond shape. Now, let ds be the usual metric on R?. Thus, its open balls are
open circles. Now, for € R? and r > 0, we can easily see that we can fit an open
dy-ball centered at T inside By, (7, 7). That is, we can draw an open circle, centered
at 7, inside the open diamond centered at . Similarly, given an open circle centered
at T, we can easily draw an open diamond centered at T inside the open circle. Thus

d; and ds are equivalent.

Next, we will look at another way to determine whether or not two metrics are equiv-
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alent. While it only provides sufficient conditions for two metrics to be equivalent,

it is often used in applications.

Theorem 7.2.14. Let X be a set and let di and dy be metrics on X. If the identity
function f: (X,dy) — (X,dy) is bi-Lipschitz, then dy and dy are equivalent.

Proof. Let the identity map f : (X,d;) — (X, dy) be bi-Lipschitz. By Exercise 7.2.10,
it suffices to prove f is a homeomorphism. Obviously, f is a bijection. Further, since
f is bi-Lipschitz, we have that f and f~! are Lipschitz. Thus, by Exercise 7.2.2, the

functions f and f~! are continuous. Thus, f is a homeomorphism. n

The following corollary simply combines the definition for bi-Lipschitz with the above
theorem but it has the advantage of avoiding some terminology and it is often how

we show two metrics are equivalent.

Corollary 7.2.15. Let X be a set and let dy and dy be metrics on X. If there exists
k, K > 0 such that

kdi(z1,22) < do(x1,22) < Kdy(21,22),  for all x1,25 € X,

then di and do are equivalent.

Proof. Follows immediately from the definition of bi-Lipschitz and Theorem 7.2.14.
O

7.3 Baire Category Theorem

The Baire Category Theorem has many important applications in analysis. One
way to formulate the statement of the theorem is that, in a complete metric space,

the countable intersection of open dense sets must also be dense. The key word in
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this statement is "open." For example, Q and R \ Q are both dense in R, which is
complete with the usual metric, but QN (R \ Q) = (), which is obviously not dense
in R. But, Q and R \ Q are not open in R so this is not a counterexample to the

theorem.

The reason the theorem is called The Baire "Category" Theorem is because of how
Baire originally formulated the statement. Let (X, d) be a metric space. We say a
subset A of X is nowhere dense in X if the interior of its closure is empty. That
is, A is nowhere dense if (4)° = (). We say a subset of X is of the first category if
it can be written as a countable union of nowhere dense sets. A subset of X is said
to be of the second category if it is not of the first category. With this language,
The Baire Category Theorem can be stated as follows: In a complete metric space,
every nonempty open subset is of the second category. The reader is asked to prove

the equivalence of the two formulations of the theorem in the following exercise.

Exercise 7.3.1. Prove that the two formulations of The Baire Category Theorem
given above are equivalent. That is, prove the countable intersection of open dense
sets is dense if and only if every nonempty open subset is of the second category.
Hint: First prove that if A is nowhere dense, then A€ is dense. Also, a nowhere
dense set A is not necessarily closed but A is certainly closed. The remainder of the

proof relies solely on set operation identities.
It should be mentioned, the categories discussed by Baire have nothing to do with
categories as they are defined in the field of mathematics called Category Theory.

Before proving Baire’s theorem, we first need a definition and to prove a different

theorem called The Cantor Intersection Theorem.

Definition 7.3.2. Let (X, d) be a metric space. For any subset A of X, we define
the diameter of A by

diam(A) = sup{d(z,y)| z,y € A}
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if A is bounded and diam(A) = oo if A is not bounded.

A quick exercise is in order to prove that the definition of the diameter of a set is
well-defined.

Exercise 7.3.3. Let (X,d) be a metric space and let A be a subset of X. Then
diam(A) < oo if and only if A is bounded.

We are now ready to prove The Cantor Intersection Theorem.

Theorem 7.3.4. (Cantor Intersection Theorem) Let (X, d) be a complete metric

00
n=1

Cri1, for all k € Z,. If diam(C,,) — 0, then N2, C,, = {zx}, for some x € X.

space and let (C,,) be a sequence of nonempty closed subsets of X such that Cy 2

Proof. Since each C,, is nonempty, let z, € C,, for all n € Z,. We first want to

)
n=1

Ny € Zy such that, for all n > Ny, we have diam(C,) < e. Let N = Ny and
let n,m > N. Since C,, C Cy and C,, C Cy, we have that z,,z,, € Cy, thus,

show (z,)22, is a Cauchy sequence. Let € > 0. Since diam(C,,) — 0, there exists

d(xp, xm) < diam(Cy) < e. Hence, (z,)5, is a Cauchy sequence.

Since (X, d) is complete, there exists x € X such that z, — z. Fix k € Z,. Then
(2,)22, is a sequence in C} which also converges to z. Since Cj is closed, we have

that © € C. Thus, we have that x € C}, for all k € Z and so z € N2, C,.

[t is left to show there exists noy € N2, where y # z. Suppose so. Then d(x,y) > 0.

Since diam(C,) — 0, there exists N € Z, such that diam(Cy) < d(x,y). But,
x,y € Cy so d(z,y) < diam(Cy). This is a contradiction. Thus, N> ,C,, = {z}. O

We are now ready to prove The Baire Category Theorem.

Theorem 7.3.5. (Baire Category Theorem) Let (X,d) be a complete metric
space. If (U,)S2, is a sequence of open dense subsets of X, then N U, is dense in

X.
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Proof. Let (X,d) be a complete metric space and let (U,)5, be a sequence of open
desne subsets of X. Let W be a nonempty open set in X. It suffices to show
W n(nee,U,) # 0, by Exercise ?7?.

Since Uy is dense in X, we have that W N U; # (. Further, W N U, is open, so there
exists z; € X and 0 < r; < % such that By(x1,7) C W NU;.

Now, we will construct sequences (z,)5, and (r,)5, inductively in the following

way: Suppose we have constructed z, and rj for all £ = 2,...,n such that

_ 1
Bd(.ka,Tk) - Bd(xk,l,rk,l) N Uk and O0<r, < 2_k
and, for k=1, Byg(zy,7) CWNU; and 0 < 7y < % Consider By(zp, 1) N Upyq. It
is nonempty, so there exists z, 11 € Bg(xy,,r,) N Uyyq. Further, it is open, so there
exists 0 < 7,41 < 2% such that By(2p41,7ns1) € Ba(Tn,n) N Upyr. Thus, we have

constructed sequences (x,,)> , and (r,)%%, such that

(1) Ba(Tni1,mns1) € Ba(wn,7) N Upyy for all n € Z,, and By(xy,7) € W N U,

and

(i) 0 <7, < 55, foralln € Z,.

Thus, we have a sequence of closed sets (By(x,,7,))%%, such that r, — 0. Hence,

diam(By(z,,7,)) < 1 — 0. Further, for all n € Z,, we have

Bd($n+1arn+1) g Bd<xn7 Tn) g Ed($narn)~

So, by The Cantor Intersection Theorem, N, By(z,,7,) = {z}, for some z € X.
Hence, for all n > 1, we have that € Bg(z,,7,) € By(2p_1,70-1) N Uy, and so
x € U, for all n > 1. Further, + € By(zy,71) € W NU; and so we also have that
x € W and x € U;. In all, we now have that x € W and = € U, for all n € Z,.
Thus, x € W N (N22,U,,) and therefore N° U, is dense in X. O
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As we mentioned, there are many applications of the Baire Category Theorem and
we will see some important ones in the next chapter. One interesting application is

the following exercise.

Exercise 7.3.6. Prove that R?, with the usual metric, cannot be covered by a

countable number of straight lines.

We can generalize the previous exercise to R™. Specifically, we can use the Baire
Category Theorem to show that R? cannot be covered by a countable union of planes
or we cannot cover R™ by a countable union of "planes" (translated n— 1-dimensional

subspaces).

We can also use The Baire Category Theorem to show that the set of all continuous
functions on some closed interval [a, b] which are differentiable for at least one point
in [a,b] are of the first category in the set of all continuous functions on [a,b] (we
can define a metric on the set of all continuous functions on [a,b] which makes it
a complete metric space). Thus, "most" continuous functions on [a, b] are nowhere

differentiable (not differentiable at any point in [a, b]).

7.4 Metrics Defined on Products

Given sets X;, where ¢ € I, for some index set I, when and how can we define a
metric on [[,.; X7 Recall from Chapter 5 that R® with the product topology is
nonmetrizable even though R with the usual metric is a metric space. Thus, in
general, we can’t expect the product of metric spaces to have a metric which induces

the product topology. In fact, we have the following theorem.

Theorem 7.4.1. Let (X, 7;) be a topological space, for all i in some index set I.
The set [[,c; Xi, with the product topology, is metrizable if and only if each (X;, ;)

15 metrizable and X; is a singleton for all but countably many v € I.
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Proof. Let X =]

ZEI

We will start with the forward direction. Since each X; is homeomorphic to a sub-
space of X, specifically, X; = [[,.; Y;, where Y; = {x;}, for some z; € X, for i # j,
and Y; = X, and X is metrizable, we have that X is metrizable by Exercise 7.2.11.
Further, since X is metrizable, it must be first countable and so there can be, at

most, countably many nonsingleton factors in the product.

For the backwards direction, we can simply disregard the singleton factors and
assume | = Z, since, if X;,, for k € Z,, denote the nonsingleton factors, then
[Thez, Xiv = [Lie; Xi- Thus, let’s just assume [ = Z,. Let k € Z;. Then (X, 7x)
is metrizable, so there exists a metric dj which induces 7. Define p; : X x X - R
by pr(z,y) = min{1,d(z,y)}. A following exercise asks the reader to show pj is a
metric which is equivalent to di. Thus, py induces 7, as well. The advantage of the
metric py is that it has the added property that pi(z,y) <1 for all z,y € Xj. Now,
for 7,7y € X, define

fy Zpk %7% .

It is fairly straightforward to check that d defines a metric on X. What is left to
show is that d induces the product topology on X. To this end, let * € X and let U
be a basic open neighborhood of  with respect to the product topology. Then there
exists n € Zy, ky,...,k, € Z,, and €, ..., €, > 0 such that

U= 7Tk_11<Bpk1 (xkla 61)) M 7T]<:_21(Bﬂk2 (xky ek)) M---N ﬂ—k_nl(B/Jkn (Ikw 671))'

Let e = min{g%, 52, . .., 5= ). We want to show that By(7,¢) C U. Let §J € Bq(7, €).

Then d(Z,y) < € and so, for j = 1,...,n, we have that

E
2k

Pk; (ﬁkj, ykj)

o0 <d(7,7) <e<

and so pg; (x;, Yx,) < €;. Hence, 7 € U. This shows that product topology is weaker
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than the topology induced by d.

On the otherhand, given € X, a basic open neighborhood of = with respect to the
topology induced by d is of the form By(Z,¢), for some ¢ > 0. Pick N € Z, such
that Y77 v.q 3¢ < § and let

€

_ € _ € 3
U=m (B, (1, ﬁ)) Ny (Bpy (w2, ﬁ)) NNy (Boy (2w, W»‘

Clearly, U is open with respect to the product topology and * € U. We claim that

U C By(7,¢). Let y € U. Then py(xx, yx) < 5%, for all k =1,2,..., N. Then,

N o)
_ Pk( Tk, Yi) Pk (T, Yk)
d(z,y) = Z ok + Z ok
k=1

k=N+1
N 9]
€ 1 1
<onant 2
k=1 k=N+1
€ €
< —=N+ -
oN T3

So, ¥ € By(T,€). Hence, we also have the topology induced by d is weaker than the
product topology. Therefore, d induces the product topology on X and the proof is
complete. O

Exercise 7.4.2. Let (X, d) be a metric space. Define p: X x X — R by p(z,y) =
min{1,d(z,y)} for all x,y € X. First, prove p is a metric on X. Then, show that p

is equivalent to d.

For example, the above theorem tells us that RY, with the product topology, is
metrizable. It also tells us that for any metric spaces, if there are only countably
many of them, then the product of the metric spaces, with the product topology, is
metrizable. In particular, if there are only finitely many metric spaces, then their

product, with the product topology, is metrizable.
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What if, though, given a product of metric spaces, we are willing to have metrics
defined on the product, or subsets of the product, which induce different topologies
other than the product topology? There are many reasons for wanting to do this.
For example, suppose we have an uncountable product of metric spaces and we are
willing to have a topology other than the product topology in order for the product
space to be metrizable. Or, for example, even though there is a metric on R which
induces the product topology, perhaps we are willing to have a different metric that,
while it doesn’t induce the product topology, has nice geometric properties which are
present in applications. In fact, we can take both scenarios a step further. Suppose
we have a product of metrizable spaces and a metric which reflects properties showing
up in applications. Unfortunately, the metric is not defined on the entire product
space. In this scenario, it is sometimes acceptable to simply define the metric on a

subset of the product space where the metric is defined.

We could certainly investigate all of these questions through the lense of metric
spaces. For most of them though, the modern context to view them from is that of
topological vector spaces. The next chapter introduces the reader to topological vec-

tor spaces and investigates some of the above questions from a different perspective.
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