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12 CHAPTER 6. PROPERTIES OF TOPOLOGICAL SPACES

In this chapter, we investigate some of the important properties of topological spaces.

Speci�cally, we will discuss, what are called the separation axioms, as well as compact

spaces, locally compact spaces, and connected spaces. We will also look at some of

the consequences of topological spaces having these properties.

6.1 Separation Axioms

Some of the topologies discussed in Chapter 3, while having pedagogical uses, are

otherwise quite useless in applications. Take for example the indiscrete topology and

the discrete topology which are so exclusive and inclusive, respectively, that they

render the topological structure virtually meaningless. What we would like to �nd is

some kind of "happy medium" where we include enough sets to make the topology

useful and interesting without overdoing it. It turns out that the way to do this is

to construct topologies rich enough to distinguish between di�erent objects (whether

they be points or sets) in the space.

De�nition 6.1.1. We say a topological space (X, τ) is a T0-space, or say τ is T0, if

for every distinct x1, x2 ∈ X, there exists O ∈ τ such that O contains x1 and not x2

or O contains x2 and not x1.

Example 6.1.2. (i) The standard example of a T0-space is R with the right ray

topology. Given any two points a, b ∈ R, we can �nd an open set that contains

one and not the other. Indeed, if a < b, then (a,∞) is an open set which

contains b but not a. Notice though, and this is important, there does not exist

an open set which contains a and not b. This is not required of a T0-space.

(ii) If X has more than one element and the indiscrete topology τ , then (X, τ) is

not a T0-space.

De�nition 6.1.3. We say a topological space (X, τ) is a T1-space, or say τ is T1,

if for every distinct x1, x2 ∈ X there exists O1 ∈ τ such that x1 ∈ O1 and x2 /∈ O1,
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and there exists O2 ∈ τ such that x2 ∈ O2 and x1 /∈ O2.

Obviously, every T1-space is T0.

Example 6.1.4. (i) If X = {1, 2} and τ = {∅, {1}, {1, 2}}, then (X, τ) is a T0-

space but not a T1-space since, given two points in X (obviously, 1 and 2), we

can �nd an open set which contains 1 and not 2 but we cannot �nd an open

set which contains 2 and not 1.

(ii) The right ray topology on R is another example of a topology which is T0 but

not T1, as we have already discussed how, given a, b ∈ R, where a < b, we

can �nd an open set containing b and not a, but we cannot �nd an open set

containing a and not b.

(iii) If we equip R with the �nite complement topology τ , then (R, τ) is a T1-space.

The proof of this is part of a later exercise.

One characterization of a T1-space is given in the following theorem.

Theorem 6.1.5. A topological space is a T1-space if and only if every singleton is

closed.

Proof. First, supppose (X, τ) is a T1-space. Let x ∈ X. Then, for every y ∈ X \{x},
there exists Oy ∈ τ such that y ∈ Oy and x /∈ Oy. Then {x}c = ∪y∈X\{x}Oy ∈ τ .

Hence, {x} is closed.

For the other direction, suppose all singletons in X are closed. Let x, y be distinct

elements ofX. Since {x} is closed, the set {x}c is an open neighborhood of y that does
not contain x. Similarly, since {y} is closed, the set {y}c is an open neighborhood of

x that does not contain y. Thus, (X, τ) is a T1-space.

De�nition 6.1.6. A topological space (X, τ) is called a T2-space, or Hausdor�

space, if for every distinct x1, x2 ∈ X, there exists O1, O2 ∈ τ such that x1 ∈ O1,

x2 ∈ O2, and O1 ∩O2 = ∅. In this case, we also say τ is T2 or Hausdor�.
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Obviously, every T2-space is a T1-space. Also, it is clear that every metric space is

a T2-space. Nevertheless, it will be given as a proceeding theorem because of its

importance.

Theorem 6.1.7. Let (X, d) be a metric space. Then the topology generated by d is

Hausdor�.

Proof. Indeed, if (X, d) is a metric space and x and y are distince elements of X, let

r = 1
2
d(x, y). Then Bd(x, r) and Bd(y, r) are disjoint open neighborhoods of x and

y, respectively.

Exercise 6.1.8. Consider R with the �nite complement topology τ . Prove τ is T1

but not T2.

Analysts almost exclusively deal with Hausdor� topologies for one very important

reason, as the next theorem illustrates.

Theorem 6.1.9. Let (X, τ) be a Hausdor� topological space. Then the limit of any

net in X is unique. That is, if (xλ)λ∈Λ is a net in X and xλ
λ−→ x1 and xλ

λ−→ x2, for

some x1, x2 ∈ X, then x1 = x2.

Proof. Let (X, τ) be Hausdor� and suppose (xλ)λ∈Λ is a net in X such that xλ → x1

and xλ → x2, for some x1, x2 ∈ X. Suppose x1 ̸= x2. Then there exists U1, U2 ∈ τ

such that x1 ∈ U1, x2 ∈ U2, and U1 ∩ U2 = ∅. Since xλ → x1, there exists λ1 ∈ Λ

such that, for all λ ≥ λ1, we have that xλ ∈ U1. Similarly, since xλ → x2, there exists

λ2 ∈ Λ such that, for all λ ≥ λ2, we have that xλ ∈ U2. Then, pick λ ∈ Λ where

λ ≥ λ1 and λ ≥ λ2 and we have that xλ ∈ U1 ∩ U2 = ∅, which is a contradiction.

Therefore, it must be the case that x1 = x2.

Recall that sequences are just a special type of net, so the above theorem tells us

that, in a Hausdor� topological space, sequences have unique limits.
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Since weak topologies are often used in analysis, and we have just seen why it is

important for topologies in analysis to be Hausdor�, we would like to have condi-

tions which imply a weak topology is Hausdor�. Our next theorem provides such

conditions.

Theorem 6.1.10. Let X be a set and let (Xi, τi) be a Hausdor� topological space,

for all i ∈ I. Let F = {fi : X → Xi| i ∈ I} and let τ be the weak topology on X

generated by F . If F separates points, then τ is Hausdor�.

Proof. Let x1 and x2 be distinct points in X. Since F separates points, there exists

i ∈ I such that fi(x1) ̸= fi(x2. Since Xi is Hausdor�, there exists U1, U2 ∈ τi

such that fi(x1) ∈ U1, fi(x2) ∈ U2, and U1 ∩ U2 = ∅. Then x1 ∈ f−1
i (U1) ∈ τ ,

x2 ∈ f−1
i (U2) ∈ τ , and f−1

i (U1) ∩ f−1
i (U2) = ∅. Hence, τ is Hausdor�.

Exercise 6.1.11. (i) Let (X, τ) be a Hausdor� topological space and let A ⊆ X.

Prove that A with the subspace topology is a Hausdor� space.

(ii) Let (Xi, τi) be a Hausdor� topological space for all i ∈ I. Prove that
∏

i∈I Xi

with the product topology is a Hausdor� space.

Exercise 6.1.12. Let (X, τ) and (Y, σ) be homeomorphic topological spaces. Prove

(X, τ) is a Hausdor� space if and only if (Y, σ) is a Hausdor� space.

We will now give the remaining two separation axioms although we will not discuss

them in detail.

De�nition 6.1.13. We say a topological space (X, τ) is regular if, whenever C is

a closed subset of X and x /∈ C, there exists O1, O2 ∈ τ such that C ⊆ O1, x ∈ O2,

and O1 ∩O2 = ∅.

As we saw in Theorem 6.1.5, singletons are not all closed unless the topological

space is a T1-space, thus, regular spaces are not necessarily Hausdor�. If we make
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the further requirement that a regular space be T1, then we get the next separation

axiom.

De�nition 6.1.14. If a topological space is a regular T1-space, then we say it is a

T3-space.

If a regular topological space is a T1-space, so that singletons are closed, then it is

obviously Hausdor�.

The last separation axiom is given in the following de�nition.

De�nition 6.1.15. A topological space (X, τ) is normal if, given disjoint closed

subsets A1 and A2 of X, there exist disjoint O1, O2 ∈ τ such that A1 ⊆ O1 and

A2 ⊆ O2. If (X, τ) is also a T1-space, then we say (X, τ) is a T4-space.

Clearly, a T4-space is a T3-space.

6.2 Compact Spaces

De�nition 6.2.1. Let (X, τ) be a topological space. An open cover of X is a

collection C ⊆ τ such that X = ∪O∈CO. Given an open cover C, a �nite subcover
is a �nite subset C0 of C such that X = ∪O∈C0O.

De�nition 6.2.2. We say a topological space (X, τ) is compact if every open cover

of X has a �nite subcover.

Example 6.2.3. (i) The set R with the usual topology is not compact since C =

{(−n, n)|n ∈ Z+} is an open cover of R which has no �nite subcover.

(ii) Let (X, τ) be a topological space where X is �nite. Then (X, τ) must be

compact since every open covering would be �nite.
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(iii) Consider X = { 1
n
|n ∈ Z+} as a subspace of R with the usual topology. Then

X is compact. Indeed, let C be an open covering of X. Then there exists

O ∈ C which contains 0. Thus, we can �nd ϵ > 0 such that (−ϵ, ϵ) ∩ X ⊆ O.

So, for some N ∈ Z+, we have that for all n ≥ N , the point 1
n
∈ O. Now,

for k = 1, . . . , N − 1, there exists Ok ∈ C such that 1
k
∈ Ok and so C′ =

{O1, . . . , ON−1, O} is a �nite subcover of X.

(iv) The interval [0, 1), as a subspace of R with the usual topology, is not compact

since C = {[0, 1− 1
n
)|n ∈ Z+} is an open cover of [0, 1) with no �nite subcover.

Next, we want to prove that every interval of the form [a, b], as a subspace of R with

the usual topology, is compact. We �rst need a fact about the real numbers.

De�nition 6.2.4. Let A be a subset of R. We say b ∈ R is an upper bound for A

if a ≤ b for all a ∈ A. We say b ∈ R is the least upper bound of A if b is an upper

bound for A and if b0 is another upper bound for A, then b ≤ b0. In this case, we

also refer to b as the supremum of A, and write b = supA. Similarly, we say c ∈ R
is a lower bound for A if c ≤ a for all a ∈ A. We say c ∈ R is the greatest lower

bound of A if c is a lower bound for A and if c0 is another lower bound for A, then

c0 ≤ c. In this case, we also refer to c as the in�mum of A, and write c = inf A.

Fact: Every nonempty subset of R which has an upper bound, has a supremum

(that is, has a least upper bound) and every nonempty subset of R which has a lower

bound, has an in�mum (that is, a greatest lower bound).

Whether the above fact is a theorem or an axiom depends on how we de�ne the real

numbers. Most modern analysis textbooks have it as an axiom and so it is a de�ning

characteristic of the real numbers. That is, the real numbers are the smallest set

containing the rational numbers where the above fact is true.

Theorem 6.2.5. Let a, b ∈ R, where a < b. The interval [a, b], as a subspace of R
with the usual topology, is compact.
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Proof. A closed interval [a, b] in R with the subspace topology is compact. Let C be

an open cover of [a, b]. Let D be the set of all points d in [a, b] such that a �nite

subcollection of C covers [a, d]. Clearly, a ∈ D so D is nonempty. Since b is an upper

bound for D, the set D has a least upper bound. Let d = supD. Since there exists

O ∈ C such that a ∈ O, we can �nd δ > 0 such that [a, δ) ⊆ O so, for any x ∈ [a, δ),

we have that x ∈ D. Thus, d ̸= a.

If d = b then we are done so suppose d < b. Since C is an open cover of [a, b] and

d ∈ [a, b], there exists O ∈ C such that d ∈ O. Since a < d < b, there exists ϵ > 0

such that (d − ϵ, d + ϵ) ⊆ O. Since d is the least upper bound of D, there exists

c ∈ (d − ϵ, d) such that c ∈ D (if not, d − ϵ would be an upper bound for D which

is less than d). Thus, there exists a �nite subcover C0 of [a, c]. But then, for any

e ∈ (d, d+ ϵ), the collection C0 ∪ {O} is a �nite subcover of [a, e] which implies that

e ∈ D. This contradicts the fact that d is an upper bound for D. Thus, we must have

that d = b and so there exists a �nite subcover for [a, b] and so [a, b] is compact.

In a �rst course of analysis, we learn that a subset K of R or Rn is compact if and

only if every sequence in K has a subsequence which converges to some k ∈ K. This

is not true for a general topological space. We call such spaces with this property

sequentially compact.

De�nition 6.2.6. A topological space (X, τ) is called sequentially compact if

every sequence in X has a convergent subsequence.

For a general topological space, we have to replace sequences in the above de�nition

with nets. This result will be given in Theorem 6.2.9. First, we need to look at

another way to characterize compact spaces for general topological spaces.

De�nition 6.2.7. We say a collection of sets C = {Ci| i ∈ I} has the �nite inter-

section property if for every �nite subset F ⊆ I, we have that ∩i∈FCi ̸= ∅.

Theorem 6.2.8. A topological space (X, τ) is compact if and only if every family of

closed sets with the �nite intersection property has nonempty intersection.
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Proof. First, suppose (X, τ) is compact. Let C = {Ci| i ∈ I} be a family of closed

sets with the �nite intersection property. Suppose ∩i∈ICi = ∅. Then X = ∪i∈IC
c
i

is an open cover of X. Since X is compact, there exists a �nite set F ⊆ I such

that X = ∪i∈FC
c
i , but then ∩i∈FCi = ∅ contradicting the fact that C has the �nite

intersection property.

For the other direction, suppose every family of closed sets with the �nite intersection

property has nonempty intersection. Let O = {Oi| i ∈ I} be an open covering of X.

If (X, τ) is not compact, then, for every �nite F ⊆ I, we have that X ̸= ∪i∈FOi and

so ∩i∈FO
c
i ̸= ∅. Thus, C = {Oc

i | i ∈ I} has the �nite intersection property. By our

assumption, we then have that ∩i∈IO
c
i ̸= ∅ and so ∪i∈IOi ̸= X, contradicting the fact

that O is an open cover of X. Therefore, we must have that (X, τ) is compact.

Theorem 6.2.9. A topological space (X, τ) is compact if and only if every net in X

has a convergent subnet.

Proof. First, suppose (X, τ) is compact. Let (xλ)λ∈Λ be a net in X. To show (xλ)λ∈Λ

has a convergent subnet, it su�ces to show, by Theorem ??, that (xλ)λ∈Λ has a

cluster point. Let Cλ = {xβ| β ≥ λ}, for all λ ∈ Λ. Let C = {Cλ|λ ∈ Λ}.

We now want to prove the family C has the �nite intersection property. Let F =

{λ1, λ2, . . . , λn}. Pick λ0 ≥ λk, for all k = 1, 2, . . . , n. Then xλ0 ∈ Cλk
, for all

k = 1, 2, . . . , n so ∩n
k=1Cλk

̸= ∅. Then, since X is compact, we have ∩λ∈ΛCλ ̸= ∅. Let
x ∈ ∩λ∈ΛCλ. We want to show x is a cluster point. Let U be an open neighborhood

of x. Let λ0 ∈ Λ. Since x ∈ ∩λ∈ΛCλ, we have that x ∈ Cλ0 = {xβ| β ≥ λ0}, we have
that U ∩ {xβ| β ≥ λ0} ≠ ∅. So, there exists λ ≥ λ0 such that xλ ∈ U . Thus, x is a

cluster point.

For the other direction, suppose C = {Ci| i ∈ I} is a family of closed sets with the

�nite intersection property. Let P be the set of all �nite subsets of I with an order

de�ned by F1 ≤ F2 if and only if F1 ⊆ F2. For F ∈ P , we have that ∩i∈FCi ̸= ∅,
so let xF ∈ ∩i∈FCi. Thus, we have a net (xF )F∈P . By assumption, the net (xF )F∈P
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has a cluster point x. We now want to prove that x ∈ Ci for all i ∈ I. Let i0 ∈ I.

Let U be an open neighborhood of x. Then, for F0 = {i0}, there exists F ≥ F0 such

that xF ∈ U . Since F ≥ F0, we have that i0 ∈ F . Also, we have xF ∈ ∩i∈FCi, so

xF ∈ Ci0 . Hence, U ∩ Ci0 ̸= ∅. Thus, x ∈ Ci0 = Ci0 . Therefore, x ∈ Ci, for all i ∈ I

and so x ∈ ∩i∈ICi.

While it was mentioned in the proof above that, because of Theorem ??, Theorem

6.2.9 is equivalent to the statement that a space is compact if and only if every net

has a cluster point, it is worth stating as a following corollary.

Corollary 6.2.10. A topological space (X, τ) is compact if and only if every net in

X has a cluster point.

Exercise 6.2.11. (i) Let (X, τ) be a compact space. Prove that every closed set

A in X is compact (when A is equipped with the subspace topology).

(ii) Let (X, τ) be a Hausdor� space. If A is a compact subset of X, then A is

closed.

Exercise 6.2.12. Prove that the continuous image of a compact space is compact.

That is, suppose (X, τ) and (Y, σ) are topological spaces and f : (X, τ) → (Y, σ) is

continuous. Prove that if (X, τ) is a compact space, then f(X) is a compact subspace

of (Y, σ). Conclude that if (X, τ) is homeomorphic to (Y, σ) then (X, τ) is compact

if and only if (Y, σ) is compact.

Our next goal is to prove Tychono�'s Theorem which states that a product of topo-

logical spaces, with the product topology, is compact if and only if each factor in

the product is compact. We �rst need a remark and a few de�nitions. The proof

provided in these notes follows a proof given by Cherno� in 1992 in a paper titled,

"A simple proof of Tychono�'s Theorem via nets."
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Remark 6.2.13. If (Xi, τi) is a topological space, for all i ∈ I and we let X =∏
i∈I Xi with the product topology, then any basic open set N in X is of the form

N = π−1
i1
(Ui1) ∩ π−1

i2
(Ui2) ∩ · · · ∩ π−1

in
(Uin) (6.1)

for some n ∈ Z+, where Uij ∈ τij for all j = 1, . . . , n. If we let F = {i1, i2, . . . , in},
then we will denote the basic open set N in Equation (6.1) by N = N{Uj| j ∈ F}.

De�nition 6.2.14. Let (Xi, τi) be a topological space, for all i ∈ I and let X =∏
i∈I Xi with the product topology. If J ⊆ I, then we say g ∈

∏
i∈J Xi is a partially

de�ned member of X. Let (fλ)λ∈Λ be a net in X. Suppose g, with domain J , is

a partially de�ned member of X. We say g is a partial cluster point of (fλ)λ∈Λ

if, given λ0 ∈ Λ, for every �nite subset F ⊆ J and every basic open neighborhood

N{Uj| j ∈ F} of g in
∏

i∈J Xi, there exists λ ∈ Λ, where λ ≥ λ0 such that, for all

j ∈ F , we have that fλ(j) ∈ Uj. Or, equivalently, g is a partial cluster point for

(fλ)λ∈Λ if g is a cluster point in
∏

i∈J Xi for the net (fλ|J)λ∈Λ.

Theorem 6.2.15. (Tychono�'s Theorem) Let (Xi, τi) be a topological space for

all i ∈ I. Then X =
∏

i∈I Xi with the product topology is compact if and only if

(Xi, τi) is compact for every i ∈ I.

Proof. First, suppostX is compact. Let i ∈ I. Since the projection map πi : X → Xi

is continuous, by Exercise 6.2.12, we have that πi(X) = Xi is compact.

Now, for the other direction, suppose (Xi, τi) is compact, for all i ∈ I. We want to

show that every net in X has a subnet which converges to an element of X. Since a

net has a convergent subnet to a point g if and only if g is a cluster point for the net,

it su�ces to show that every net in X has a cluster point. To this end, let (fλ)λ∈Λ

be a net in X. Our goal is to show that there exists a partial cluster point g, with

domain J , such that J = I. Then g is a cluster point for (fλ)λ∈Λ.

To this end, let P be the set of all partial cluster points of (fλ)λ∈Λ. The set P is
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nonempty since the empty function is an element of P . Let g1, g2 ∈ P , where J1

is the domain of g1 and J2 is the domain of g2. De�ne a partial ordering on P by

g1 ≤ g2 if and only if J1 ⊆ J2 and g1(j) = g2(j), for all j ∈ J1. We now want to

show P has a maximal element by using Zorn's Lemma. Let C = {gα|α ∈ A} be a

chain in P . De�ne g0 = ∪α∈Agα (where we think of gα as a subset of Jα × (∪i∈IXi)).

Since C is totally ordered, it is easy to see that g0 is a partially de�ned member of

X with domain ∪α∈AJα and that, since each gα is a partial cluster point for (fλ)λ∈Λ,

the function g0 is also a partial cluster point for (fλ)λ∈Λ. Hence, g0 ∈ P . Clearly, g0
is an upper bound for C. Thus, by Zorn's Lemma, P contains a maximal member g.

We now wish to show that if J is the domain of g, then J = I. Suppose not. Let

k ∈ I \ J . Since g is a cluster point in
∏

i∈J Xi for (fλ|J)λ∈Λ, there exists a subnet

(fλµ |J)µ∈M such that fλµ|J
µ−→ g. Since Xk is compact and (fλµ(k))µ∈M is a net in

Xk, (fλµ(k))µ∈M has a cluster point p in Xk. De�ne a function h on J ∪ {k} by

h(j) = g(j), for all j ∈ J and h(k) = p. Then h is a partial cluster point of (fλ)λ∈Λ,

so h ∈ P , and h > g, which contradicts the maximality of g in P . Hence, we must
have that J = I and so g is a cluster point of (fλ)λ∈Λ. Therefore, X is compact.

Tychono�'s Theorem has many important applications. As Stephen Willard wrote

in his textbook General Topology, "the theorem just proved (Tychono�'s Theorem)

can lay good claim to being the most important theorem in general (nongeometric)

topology." One application of Tychono�'s Theorem is the Heine-Borel Theorem. We

�rst need to de�ne bounded sets in metric spaces.

De�nition 6.2.16. Let (X, d) be a metric space and let A ⊆ X. We say the set

A is bounded if there exists x ∈ X and r > 0 such that A ⊆ Bd(x, r). We say a

sequence (xn)
∞
n=1 is bounded if the set {xn|n ∈ Z+} is bounded.

Exercise 6.2.17. Let (X, d) be a metric space and let (xn)
∞
n=1 be a sequence in X.

If (xn)
∞
n=1 converges, then (xn)

∞
n=1 is bounded.
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Theorem 6.2.18. (Heine-Borel Theorem) A subset of Rn with the usual topology

is compact if and only if it is closed and bounded.

Proof. Let A ⊆ Rn.

First, suppose A is compact. By Exercise 6.2.11, since Rn is Hausdor� and A is

compact, we have that A is closed. To show A is bounded, let C = {Bd(x, 1)∩A|x ∈
A}, where d is the usual metric on Rn. Then C is an open cover of A so there exists

a �nite subcover. That is, there exists n ∈ Z+ and x1, x2, . . . , xn ∈ A such that

A ⊆ ∪n
k=1Bd(x, 1). Let r = max{|x1|, |x2|, . . . , |xn|} + 1. Then A ⊆ Bd(0, r) and so

A is bounded.

Now, suppose A is closed and bounded. Since A is bounded, A ⊆ B(0,M), for some

M > 0. Hence, A ⊆ [−M,M ]n which is compact by Tychono�'s Theorem. Thus, A

is a closed subspace of a compact space and so, by Exercise 6.2.11, we have that A

is compact.

Since Cn with the usual topology is homeomorphic to R2n, the Heine-Borel Theorem

also tells us that subsets of Cn are compact if and only if they are closed and bounded.

One statement whose proof is easily extracted from our proof of the Heine-Borel

Theorem is that if we have a compact subset of a metric space, then it is closed and

bounded.

Corollary 6.2.19. Let (X, d) be a metric space and let A ⊆ X. If A, with the

subspace topology, is compact, then A is closed and bounded.

Proof. Since metric spaces are Hausdor�, by Exercise 6.2.11, we have that A is closed.

To show A is bounded, consider C = {Bd(x, 1) ∩ A|x ∈ A}. Clearly, C is an open

cover of A. Since A is compact there must exist n ∈ Z+ and x1, . . . , xn ∈ A such

that A = ∪n
k=1Bd(xk, 1). Let r = max{d(x1, xk)| k ∈ Zn} + 1. Then A ⊆ Bd(x1, r)

and so A is bounded.
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In an analysis course, one important fact about a continuous functon f : A → R,
where A ⊆ Rn, is that if A is compact, then the function f is bounded. We can now

prove this statement in much more generality as the next exercise shows.

Exercise 6.2.20. Let (X, τ) be a compact topological space and let (Y, d) be a

metric space. If f : (X, τ) → (Y, d) is continuous, then f(X) is bounded.

We can actually quite a bit more in the above exercise if the metric space (Y, d) is

R with the usual metric.

Theorem 6.2.21. (Extreme Value Theorem) Let (X, τ) be a compact topological

space and let f : (X, τ) → (R, σ) be continuous, where σ is the usual topology on R.
Then there exist x1, x2 ∈ X such that f(x1) ≤ f(x) ≤ f(x2) for all x ∈ X.

Proof. Since (X, τ) is compact and f is continuous, we have that f(X) is a compact

subset of R. By the Heine-Borel Theorem, we then have that f(X) is closed and

bounded. Since f(X) is bounded, we know s = sup f(X) exists. If s is not a limit

point of f(X), then there exists ϵ > 0 such that (f(X)∩ (s− ϵ, s+ ϵ))\{s} = ∅. But
then, any y ∈ (s − ϵ, s) would be an upper bound for f(X) and would be less than

s, contradicting the fact that s is the least upper bound. Thus, we must have that s

is a limit point of f(X). Then, since f(X) is closed, we must have that s ∈ f(X).

Thus, there exists x2 ∈ X such that f(x2) = s and so f(x2) ≥ f(x) for all x ∈ X.

A similar argument shows there exists x1 ∈ X such that f(x1) = inf f(X) and so

f(x1) ≤ f(x) for all x ∈ X.

It should be stressed that while compact implies closed and bounded in a metric

space, the converse is not necessarily true. That is, in a general metric space, closed

and bounded does not imply compact. This illustrates the signi�cance of the Heine-

Borel Theorem. If our metric space is Rn with the usual metric, then the converse

is true.
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It is worth noting that the concepts of sequential compactness and compactness are

not weaker or stronger assumptions than the other. There are examples of compact

spaces which are not sequentially compact and there are examples of sequentially

compact spaces which are not compact. In many instances, checking that a space is

sequentially compact tends to be easier than checking whether every open covering

has a �nite subcovering so it would be nice to have an easy way to know when the

two types of compactness are equivalent. The next theorem tells us that a metric

space is sequentially compact if and only if it is compact. We �rst need two lemmas.

Lemma 6.2.22. (Lebesgue Number Lemma) Let (X, d) be a sequentially com-

pact metric space. If O is an open cover of X, then there exists δ > 0 such that, for

each x ∈ X, there exists O ∈ O such that Bd(x, δ) ⊆ O.

Proof. Suppose not. Let O be an open covering for X. Then for all δ > 0, there

exists x ∈ X such that Bd(x, δ) ̸⊆ O, for all O ∈ O. In particular, for all n ∈ Z+,

there exists xn ∈ X such that Bd(xn,
1
n
) ̸⊆ O, for all O ∈ O. Thus, we have

de�ned a sequence (xn)
∞
n=1 in X. Since (X, d) is sequentially compact, there exists a

subsequence (xnk
)∞k=1 and x ∈ X such that xnk

→ x. Since O is an open cover of X,

there exists O ∈ O such that x ∈ O. Since O is open, there exists ϵ > 0 such that

Bd(x, ϵ) ⊆ O. Since xnk
→ x, there exists K0 ∈ Z+ such that, for all k ≥ K0, we

have d(xnk
, x) < ϵ

2
. Pick k ≥ K0 so that 1

nk
< ϵ

2
.

Claim: Bd(xnk
, 1
nk
) ⊆ Bd(x, ϵ).

Indeed, for x0 ∈ Bd(xnk
, 1
nk
), we have that d(x0, xnk

) < 1
nk

< ϵ
2
. So

d(x0, x) ≤ d(x0, xnk
) + d(xnk

, x) <
ϵ

2
+

ϵ

2
= ϵ.

Thus, Bd(xnk
, 1
nk
) ⊆ Bd(x, ϵ) ⊆ O and O ∈ O, so this is a contradiction.

Given an open covering, a number δ satisfying the conditions in the lemma above is
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called a Lebesgue number for the covering which is the reason for the lemma's title.

Lemma 6.2.23. If (X, d) is a sequentially compact metric space, then, for all ϵ > 0,

there exists n ∈ Z+ and x1, x2, . . . , xn ∈ X such that

X =
n⋃

k=1

Bd(xk, ϵ).

Proof. We will proceed with a proof by contrapositive so suppose there exists ϵ > 0

such that, for any n ∈ Z+ and all x1, x2, . . . , xn ∈ X, we have thatX ̸= ∪n
k=1Bd(xk, ϵ).

Let x1 ∈ X. By our assumption, X ̸= Bd(x1, ϵ) and so pick x2 ∈ X such that

x2 /∈ Bd(x1, ϵ). Again, by our assumption, X ̸= Bd(x1, ϵ) ∪ Bd(x2, ϵ) so pick

x3 ∈ X such that x3 /∈ Bd(x1, ϵ) ∪ Bd(x2, ϵ). For n ≥ 2, suppose we have de-

�ned x1, x2, . . . , xn−1. By our assumption, X ̸= ∪n−1
k=1Bd(xk, ϵ) so let xn ∈ X such

that xn /∈ ∪n−1
k=1Bd(xk, ϵ). Thus, using induction, we have de�ned a sequence (xn)

∞
n=1

such that xn /∈ ∪n−1
k=1Bd(xk, ϵ), for all n ∈ Z+.

We now claim that (xn)
∞
n=1 has no convergent subsequence. Indeed, for n,m ∈ Z+

such that n > m, we have that xn /∈ Bd(xm, ϵ) and so d(xn, xm) ≥ ϵ. Thus, the

distance between any two distinct terms in the sequence must be at least ϵ and so it

cannot have a convergent subsequence.

Theorem 6.2.24. Let (X, d) be a metric space. Then (X, d) is sequentially compact

if and only if it is compact.

Proof. Suppose (X, d) is sequentially compact. Let O be an open cover of X. From

Lemma 6.2.22, there exists δ > 0 such that, for all x ∈ X, there exists O ∈ O such

that Bd(x, δ) ⊆ O. By Lemma 6.2.23, there exists n ∈ Z+ and x1, x2, . . . , xn ∈ X

such that

X =
n⋃

k=1

Bd(xk, δ).
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But, for each k = 1, 2, . . . , n, there exists Ok ∈ O such that Bd(xk, δ) ⊆ Ok. Thus,

X = ∪n
k=1Ok and so {O1, O2, . . . , On} is a �nite subcover of O and so (X, d) is

compact.

We will prove the backwards direction by proving the contrapositive so suppose (X, d)

is not sequentially compact. Then there exists a sequence (xn)
∞
n=1 in X which has

no convergent subsequence. Let z ∈ X. Then there exists δz > 0 so that, at most,

only �nitely many terms from (xn)
∞
n=1 are contained in Bd(z, δz) (If not, then for all

ϵ > 0, we would have in�nitely many terms from the sequence contained in Bd(z, ϵ)

thus allowing us to construct a subsequence which converges to z). Then, we have

X =
⋃
z∈X

Bd(z, δz)

and so O = {Bd(z, δz)| z ∈ X} is an open cover of X. But, for any n ∈ Z+ and

z1, z2, . . . , zn ∈ X, we have

X ̸=
n⋃

k=1

Bd(zk, δzk)

since each Bd(zk, δzk) contains only �nitely many terms from the sequence (xn)
∞
n=1

and so there must exist terms from the sequence which are not contained in ∪n
k=1Bd(zk, δzk).

Hence, O does not have a �nite subcover and so (X, d) is not compact.

A consequence of the above theorem as well as the Heine-Borel Theorem is the

Bolzano-Weierstrass Theorem. We �rst need a quick lemma.

Lemma 6.2.25. Let (X, d) be a metric space and let A ⊆ X. If A is bounded, then

A is bounded.

Proof. Let A be a bounded subset of X. Then there exists x ∈ X and r > 0 such

that A ⊆ Bd(x, r). Then we have that A ⊆ Bd(x, r) ⊆ Bd(x, r) and, since Bd(x, r) is
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closed, A ⊆ Bd(x, r). Thus,

A ⊆ Bd(x, r) ⊆ Bd(x, r + 1)

and so A is bounded.

Theorem 6.2.26. (Bolzano-Weierstrass Theorem) Every bounded sequence in

Rn has a convergent subsequence.

Proof. Let (xn)
∞
n=1 be a bounded sequence in Rn. Let A = {xn|n ∈ Z+}. Then A

is bounded. By Lemma 6.2.25, we have that A is bounded. Thus, A is a closed and

bounded subset of Rn. By the Heine-Borel Theorem, A is compact. Since Rn is a

metric space where compactness implies sequential compactness, we have that every

sequence in A has a convergent subsequence. In particular, (xn)
∞
n=1 is a sequence in

A and, thus, it has a convergent subsequence.

6.3 Locally Compact Spaces

Compactness is such a useful property that we often seek to involve it in spaces

which are not compact. One way we can do this is to introduce the concept of local

compactness. Let's start with the de�nition.

De�nition 6.3.1. A topological space (X, τ) is locally compact at x0, where

x0 ∈ X, if there exists an open neighborhood U of x0 and a compact subspace K of

X such that U ⊆ K. We say a topological space (X, τ) is locally compact if it is

locally compact at x0 for all x0 ∈ X.

Example 6.3.2. (i) Every compact set is locally compact. Indeed, if (X, τ) is

compact, then for any x0 ∈ X, the set X is an open neighborhood of x0 which

is contained in the compact set X.
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(ii) The set R with the usual topology is locally compact. Given any x ∈ R, the
point x is an element of the open interval (x−1, x+1) which is contained in the

compact set [x− 1, x+ 1]. The set R with the usual topology is not, however,

compact.

(iii) For any n ∈ Z+, the set Rn with the topology induced by the usual metric d is

locally compact. Given x ∈ Rn, we have that Bd(x, 1) ⊆ Bd(x, 1) and Bd(x, 1)

is compact by the Heine-Borel Theorem, since it is closed and bounded.

(iv) The set RR with the product topology is not locally compact. Indeed, for

f ∈ RR, any open set containing f would contain a base element of the form

B = π−1
x1
((a1, b1)) ∩ · · · ∩ π−1

xn
((an, bn))

and any compact set containing B would have to contain B (since RR is Haus-

dor�, by Exercise 6.2.11, part (ii) ). However,

B = π−1
x1
([a1, b1]) ∩ · · · ∩ π−1

xn
([an, bn])

and, by Tychono�'s Theorem, B is compact if and only if πx(B) is compact for

all x ∈ R. But, for x ̸= xi for i = 1, . . . , n, we have that πx(B) = R which is

not compact.

Theorem 6.3.3. Let (X, τ) and (Y, σ) be topological spaces and suppose f : (X, τ) →
(Y, σ) is continuous, open, and onto. If (X, τ) is locally compact, then (Y, σ) is locally

compact.

Proof. Let y0 ∈ Y . Let O be an open neighborhood of y0. Since f is onto, there

exists x0 ∈ X such that f(x0) = y0 Since f is continuous, we have that f−1(O)

is an open neighborhood of x0. Since (X, τ) is locally compact, there exists an

open neighborhood U of x0 and a compact set K such that f(U) ⊆ f(K). Then,

V = U ∩ f−1(O) is an open neighborhood of x0. Further, since f is open, the set
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f(V ) is an open neighborhood of y0. Also, V ⊆ K so f(V ) ⊆ f(K). Since f is

continuous and K is compact, by Exercise 6.2.12 we have that f(K) is compact.

Thus, f(V ) is an open neighborhood of y0 and f(V ) is contained in the compact set

f(K) and so (Y, σ) is locally compact at y0. This holds for all y0 ∈ Y and so (Y, σ)

is locally compact.

Exercise 6.3.4. If (X, τ) is homeomorphic to (Y, σ) prove that (X, τ) is locally

compact if and only if (Y, σ) is locally compact.

Theorem 6.3.5. Let (Xα, τα) be a topological space, for all α ∈ I. Then
∏

α∈I Xα

is locally compact if and only if each (Xα, τα) is locally compact and all but �nitely

many are compact.

Proof. Suppose
∏

α∈I Xα is locally compact. Let γ ∈ I. Since the projection map

πγ :
∏

α∈I Xα → Xγ is continuous, open, and onto, by Theorem 6.3.3, we have that

(Xγ, τγ) is locally compact.

Let f ∈
∏

α∈I Xα. Since
∏

α∈I Xα is locally compact, there exists a basic open

neighborhood U of f and a compact set K such that U ⊆ K. Since U is a basic open

set, there exists n ∈ Z+, α1, α2, . . . , αn ∈ I, and Oαk
∈ ταk

, for all k = 1, 2, . . . , n,

such that

U = π−1
α1
(Oα1) ∩ π−1

α2
(Oα2) ∩ · · · ∩ π1

αn
(Oαn).

Let γ ∈ I such that γ ̸= αk, for all k = 1, 2, . . . , n. Then we have that πγ(K)

is compact, since πγ is continuous. And, since U ⊆ K, we have that πγ(U) ⊆
πγ(K). But, since γ ̸= αk, for all k = 1, 2, . . . , n, we have that πγ(U) = Xγ. Thus,

Xγ = πγ(K) is compact. Thus, the only Xα which are potentially not compact are

Xα1 , Xα2 , . . . , Xαn .

For the other direction, suppose (Xα, τα) is locally compact for all α ∈ I and compact

except for α1, α2, . . . , αn ∈ I, for some n ∈ Z+. Let f ∈
∏

α∈I Xα. For k = 1, 2, . . . , n,

we have that f(αk) ∈ Xαk
. Since Xαk

is locally compact, there exists an open
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neighborhood Oαk
∈ ταk

of f(αk) and a compact setKαk
inXαk

such that Oαk
⊆ Kαk

.

Then,

U = π−1
α1
(Oα1) ∩ π−1

α2
(Oα2) ∩ · · · ∩ π−1

αn
(Oαn)

is an open neighborhood of f , and

K = π−1
α1
(Kα1) ∩ π−1

α2
(Kα2) ∩ · · · ∩ π−1

αn
(Kαn)

is compact by Tychono�'s Theorem (Theorem 6.2.15) since K is the product of

compact sets. Also, since Oαk
⊆ Kαk

for all k = 1, 2, . . . , n, we have that U ⊆ K.

Thus,
∏

α∈I Xα is locally compact.

Example 6.3.6. The above theorem is another way to see that Rn is locally compact,

for all n ∈ Z+. It is also another way to see that RR is not locally compact.

In Chapter 3, the motivation for de�ning the closure of a set A was that it was the

smallest closed set which contained A. Can we do something similar with compact

sets? That is, given a set, can we de�ne the smallest compact set which contains it?

Let us now make this more precise.

De�nition 6.3.7. Let (Y, σ) be a compact Hausdor� space and let X be a proper

subspace of Y . If X = Y , then we say Y is the compacti�cation of X.

Example 6.3.8. (i) Consider the interval [a, b] in R with the usual topology. Since

(a, b) = [a, b], then [a, b] is the compacti�cation of (a, b).

(ii) More generally, if we consider B(x, r) in Rn, for some x ∈ Rn, then, since

B(x, r) = B(x, r) and B(x, r) is closed and bounded, hence compact, we have

that B(x, r) is the compacti�cation of B(x, r).

Determining which topological spaces have compacti�cations and �nding descrip-

tions of those compacti�cations is a complicated task. It turns out though, that if

a topological space is locally convex and Hausdor�, then, not only does it have a
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compacti�cation, but the compacti�cation is obtained by simply including one ad-

ditional point. Furthermore, this property characterizes locally compact Hausdor�

spaces as the next theorem illustrates.

Theorem 6.3.9. Let (X, τ) be a topological space. Then (X, τ) is locally compact

and Hausdor� if and only if there exists a topological space (Y, σ) such that

(i) (X, τ) is a subspace of (Y, σ),

(ii) Y \X is a singleton, and

(iii) (Y, σ) is a compact Hausdor� space.

Further, if (Y, σ) and (Y ′, σ′) are two topological spaces satisfying these conditions,

then (Y, σ) and (Y ′, σ′) are homeomorphic and the homeomorphism between them is

the identity map on X.

Proof. First, suppose (X, τ) is a locally compact Hausdor� space. Pick any object

which is not an element of X and label it ∞. Let Y = X ∪ {∞}. Now, de�ne

σ = τ ∪ {Y \ C|C is a compact subspace of X}. (6.2)

It is a following exercise to show that σ is a topology on Y . We now want to check

that (X, τ) is a subspace of (Y, σ). That is, we want to show σ|X = τ . To this end,

let O ∈ τ . Then O ⊆ X and, by construction, O ∈ σ, so O = O ∩X ∈ σ|X . Now,
let O ∈ σ|X . Thus, O = U ∩ X, for some U ∈ σ. If U ∈ τ , then U ⊆ X and so

O = U ∈ τ so suppose U = Y \ C, for some compact subspace C of X. Then

O = U ∩X = (Y \ C) ∩X = X \ C ∈ τ

since C is closed by Exercise 6.2.11. Hence, (X, τ) is a subspace of (Y, σ).
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Now, to show (Y, σ) is compact, let O be an open covering of Y . Then there must

exist U ∈ O of the form U = Y \ C, for some compact subspace C of X (these are

the only sets in σ which contain ∞). Now, consider O0 = {O ∩ X|O ∈ O \ {U}}.
Then O0 is a collection of open sets in (X, τ). Further, if x ∈ C, then x ∈ X, since

C ⊆ X, and x is contained in one of the members of O. Thus, x is contained in one

of the members of O0. Hence, O0 is an open covering of C. Since C is compact,

there exists O1, O2, . . . , On ∈ O, for some n ∈ Z+, such that C ⊆ ∪n
k=1Ok∩X. Thus,

the collection {O1, O2, . . . , On, U} is a �nite subcover of O, and so Y is compact.

To see that (Y, σ) is Hausdor�, let z, w ∈ Y , where z ̸= w. If z, w ∈ X, then, since

(X, τ) is Hausdor�, there exists U, V ∈ τ such that z ∈ U , w ∈ V , and U ∩ V = ∅.
Since τ ⊆ σ, we have what we need. The other possibility is that z ∈ X and w = ∞.

Since (X, τ) is locally compact, there exists U ∈ τ and a compact set K such that

z ∈ U ⊆ K. Then z ∈ U ∈ τ ⊆ σ, w ∈ Y \ K ∈ σ, and U ∩ (Y \ K) = ∅. Thus,

(Y, σ) is Hausdor�.

Next, to prove the backward direction, suppose (X, τ) is a subspace of a compact

Hausdor� space (Y, σ) (note then that σ|X = τ) where Y \X = {∞} (the set Y \X
contains exactly one element which we will label ∞). We just have to show (X, τ)

is Hausdor� and locally compact. We know (X, τ) is Hausdor� by Exercise ?? since

it is a subspace of a Hausdor� space so we are left to show that (X, τ) is locally

compact.

Let x0 ∈ X. Since (Y, σ) is Hausdor�, let U, V ∈ σ such that x0 ∈ U , ∞ ∈ V , and

U ∩ V = ∅. Let C = Y \ V . Then C is a closed subspace of Y and so compact by

Exercise 6.2.11. Note that ∞ /∈ C, since ∞ ∈ V , thus C ⊆ X. Since τ = σ|X , we
have that C is a compact subspace of (X, τ). Further, since ∞ /∈ U we have that

U ⊆ X, and, since U ∩V = ∅, we have that U ⊆ C. Thus, we have found U ∈ τ and

a compact subspace C of X such that x0 ∈ U ⊆ C. Thus, (X, τ) is locally compact.

Lastly, we have to show that if (X, τ) is locally compact and we �nd two topological
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spaces (Y, σ) and (Y ′, σ′) satisfying properties (i)-(iii), then there exists a homeo-

morphism h : (Y, σ) → (Y ′, σ′) such that h|X(x) = x, for all x ∈ X. To this end,

suppose we have two such topological spaces. Let ∞ be the sole element of Y \ X
and let ∞′ be the sole element of Y ′ \ X. De�ne h : Y → Y ′ by h(x) = x, for all

x ∈ X, and h(∞) = ∞′. Clearly, h is bijective.

Let U ∈ σ. We want to show h(U) ∈ σ′.

Case 1: The point ∞ /∈ U . Then U ⊆ X and so U ∈ τ . Since (X, τ) is a subspace

of (Y ′, σ′) and X ∈ σ′ (since singletons are closed in Hausdor� spaces), we have that

U ∈ σ′. Then, since U ⊆ X, we have h(U) = U ∈ σ′.

Case 2: The point ∞ ∈ U . Let C = Y \ U . Then C is a compact subspace of Y ,

since C is closed and Y is compact. Further, ∞ /∈ C so C is a compact subspace of

X. Then, we have that C is a compact subspace of Y ′. Since Y ′ is Hausdor�, by

Exercise 6.2.11, the set C is closed in Y ′. Then, h(U) = Y ′ \ C ∈ σ′.

Hence, for all U ∈ σ, we have that h(U) ∈ σ′. A symmetric argument shows that

for all U ∈ σ′, we have h−1(U) ∈ σ. Thus, h is a homeomorphism and the proof is

complete.

Exercise 6.3.10. Prove that the collection σ de�ned in Equation (6.2) of Theorem

6.3.9 is a topology.

Thus, locally compact Hausdor� spaces are precisely the spaces constructed when

we take a compact Hausdor� space and punch a single hole in them.

De�nition 6.3.11. Let (Y, σ) be a topological space and let X be a proper subspace

of Y . If Y is the compacti�cation of X and Y \X is a singleton, then we say Y is

the one-point compacti�cation of X.

Theorem 6.3.9 tells us that the only topological spaces with one point compacti�ca-

tions are locally compact Hausdor� spaces which are not themselves compact. The
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fact that one-point compacti�cations are unique up to homeomorphism justi�es the

language being used in the above de�nition when we say the one-point compacti�ca-

tion, rather than a one-point compacti�cation. Also note that the proof of Theorem

6.3.9 provides a way for us to construct the one-point compacti�cation of a locally

compact Hausdor� space.

Example 6.3.12. (i) If we let Ŝ1 be the unit circle in R2 with the north pole

deleted (that is, the point (0, 1)), then Ŝ1 is clearly locally compact and Haus-

dor� and its compacti�cation is S1.

(ii) We have already seen that R with the usual topology is locally compact and

Hausdor�. Thus it must have a one-point compacti�cation. Indeed, if we de�ne

h : R → Ŝ1 (where Ŝ1 is given in the previous example), by

h(t) =
(
cos (2 arctan (t))− π

2
, sin (2 arctan (t))− π

2

)
then we see that R is homeomorphic to Ŝ1 and thus the one-point compacti�-

cation of R is homeomorphic to S1.

(iii) In a similar fashion, if we let Ŝ2 be the unit sphere in R3 with the north pole

missing (the point (0, 0, 1)), then R2 with the usual topology is homeomorphic

to Ŝ2 which obviously has S2 as its compacti�cation. Thus, the compacti�cation

of R2 is homeomorphic to S2. Further, since we have already seen that C is

homeomorphic to R2, the one-point compacti�cation of C is also S2. We often

denote the one-point compacti�cation of C by C ∪ {∞}, where ∞ is obviously

the new element included with C to make it compact, and refer to C∪ {∞} as

the extended complex plane.



36 CHAPTER 6. PROPERTIES OF TOPOLOGICAL SPACES

6.4 Connected Spaces

De�nition 6.4.1. Let (X, τ) be a topological space. A separation of X is a pair of

disjoint nonempty sets U, V ∈ τ such that X = U ∪ V . We say the topological space

(X, τ) is connected if there does not exist a separation of X. We say a topological

space (X, τ) is disconnected if it is not connected.

Exercise 6.4.2. Prove that a topological space (X, τ) is disconnected if and only if

there exist disjoint closed sets A and B such that X = A ∪B.

Example 6.4.3. (i) Obvious examples to build intuition would be to take X =

[1, 2] ∪ [3, 4] with the usual topology. Then, with the subspace topology, [1, 2]

and [3, 4] are both open sets so X is not connected.

(ii) If we instead take X = [1, 2] with the usual topology, then there does not exist

a separation of X so X is connected.

Another way to characterize connected spaces is given in the following theorem.

Theorem 6.4.4. A topological space (X, τ) is connected if and only if the only clopen

sets in X are ∅ and X.

Proof. Suppose (X, τ) is connected. If there exists a set A ⊆ X which is clopen,

where A ̸= ∅ and A ̸= X, then A is open and Ac is open (since A is closed) and so

A and Ac form a separation of X. This is a contradiction and so no such A exists.

Now, suppose the only clopen sets in X are ∅ and X. If X is disconnected, then

there exist disjoint nonempty open sets U and V such that U ∪ V = X. Then, we

have that U c = V and, since U is open, V = U c is closed. Thus, V is clopen and

V ≠= emptyset and V ̸= X. This is a contradiction. Thus, no such separation

exists.
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Exercise 6.4.5. Prove that the continuous image of a connected space is connected.

That is, suppose (X, τ) and (Y, σ) are topological spaces and f : (X, τ) → (Y, σ)

is continuous. If (X, τ) is connected, then f(X) as a subspace of Y , is connected.

Conclude that if (X, τ) is homeomorphic to (Y, σ) then (X, τ) is connected if and

only if (Y, σ) is connected.

Subspaces of connected spaces are not necessarily connected. For example, [0, 10] is

connected while [0, 1]∪ [9, 10] is disconnected. The next few propositions inverstigate

situations when we can say something about the connectedness of subspaces.

Proposition 6.4.6. Let (X, τ) be a topological space and let Y ⊆ X. The set Y ,

with the subspace topology, is disconnected if and only if there exist A,B ⊆ X such

that A ∪B = Y , A ∩B = ∅, and A ∩B = ∅.

Proof. Suppose Y , with the subspace topology, is disconnected. Then there exist

U, V ∈ τ such that (U ∩Y )∩ (V ∩Y ) = ∅ and Y = (U ∩Y )∪ (V ∩Y ). Let A = U ∩Y

and B = V ∩ Y . Then A ∪B = Y and A ∩B = ∅. Since the complement of A in Y

is B, which is open as a subspace of Y , A is closed in Y , so A = A
Y
. Further, from

Theorem ??, A
Y
= A ∩ Y , so A = A ∩ Y . Thus,

∅ = A ∩B = (A ∩ Y ) ∩B = A ∩ (Y ∩B) = A ∩B

since B ⊆ Y . A symmetric argument shows that A ∩B = ∅.

Now, suppose A,B ⊆ X, A ∪ B = Y , A ∩ B = ∅, and A ∩ B = ∅. Since A ⊆ A, we

have that A ∩ B ⊆ A ∩ B = ∅. Thus, by Exercise 6.4.2, it su�ces to show A and B
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are closed subsets of Y with respect to the subspace topology on Y . Well,

A
Y
= A ∩ Y by Theorem ??

= A ∩ (A ∪B) since A ∪B = Y

= (A ∩ A) ∪ (A ∩B)

= A since A ⊆ A and A ∩B = ∅

Thus, A is closed as a subset of Y . A symmetric argument shows B is also closed

as a subset of Y . Hence, A and B form a separation of (Y, τ |Y ) and thus (Y, τ |Y ) is
disconnected.

Example 6.4.7. If we consider Y = [0, 1) ∪ (1, 2] as a subspace of R with the usual

topology, then Y is disconnected. Indeed, if we let A = [0, 1) and B = (1, 2], then

Y = A ∪B while A ∩B = [0, 1] ∩ (1, 2] = ∅ and A ∩B = [0, 1) ∩ [1, 2] = ∅.

Proposition 6.4.8. Let (X, τ) be a topological space and let A and B form a sepa-

ration of X. If (Y, τ |Y ) is a connected subspace of (X, τ), then Y ⊆ A or Y ⊆ B.

Proof. Since A,B ∈ τ , we have that A∩Y,B∩Y ∈ τ |Y . Further, (A∩Y )∩(B∩Y ) ⊆
A∩B = ∅. So, A∩Y and B∩Y would form a separation of Y unless either A∩Y = ∅
or B ∩ Y = ∅. Since X = A ∪B, we then have that either Y ⊆ B or Y ⊆ A.

Proposition 6.4.9. Let (X, τ) be a topological space and let Yi ⊆ X for all i ∈ I.

If (Yi, τ |Yi
) is connected, for all i ∈ I, and ∩i∈IYi ̸= ∅, then Y = ∪i∈IYi is connected

with respect to τ |Y .

Proof. Let z ∈ ∩i∈IYi. Suppose A and B form a separation of Y . Then z ∈ A or

z ∈ B. Without loss of generality, suppose z ∈ A. Let i ∈ I. Since (Yi, τ |Yi
) is a

connected subspace of (Y, τ |Y ), by Proposition 6.4.8, we have that Yi ⊆ A or Yi ⊆ B.

Since z ∈ A and z ∈ Yi, we must have that Yi ⊆ A. This holds for all i ∈ I and thus,

Y = ∪i∈IYi ⊆ A which implies B = ∅. This contradicts the fact that A and B forma

separation of Y . Thus, (Y, τ |Y ) is connected.
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Exercise 6.4.10. Let (X, τ) be a topological space and suppose (A, τ |A) is con-

nected. If B is a set such that A ⊆ B ⊆ A, then (B, τ |B) is connected.

Note that a consequence of the last exercise is that the closure of a connected space

is also connected. It actually says a bit more. If we have a connected space and we

want to include some, but perhaps not all, of the limit points, then we can do so and

the space will stay connected.

The next theorem tells us when the �nite product of topological spaces is connected.

Theorem 6.4.11. Let (Xi, τi) be a topological space, for all i ∈ Zn. Then X =∏
i∈Zn

Xi, with the product (or box) topology is connected if and only if (Xi, τi) is

connected, for all i ∈ I.

Proof. Suppose X is connected. Let i ∈ Zn. Since πi : X → Xi is continuous, by

Exercise 6.4.5, we have that πi(X) = Xi is connected.

For the other direction, �rst suppose n = 2. Fix (a, b) ∈ X1 × X2 and consider

the subspaces {a} ×X2 and X1 × {b}. Since {a} ×X2 is homeomorphic to X2 and

X1×{b} is homeomorphic to X1, we have that {a}×X2 and X1×{b} are connected,
by Exercise 6.4.5.

Now, for y ∈ X1, we also have that {y}×X2 is connected, since it is homeomorphic to

X2. Thus, the set Zy = ({y} ×X2)∪ (X1 × {b}) is connected since it is the union of

connected spaces which have the point (y, b) in common. Then, X1 ×X2 = ∪y∈X1Zy

is connected since it is the union of connected spaces which all have the point (a, b)

in common.

A simple proof by induction, building o� of the ideas above, will then give us the

result we want for an arbitrary n ∈ Z+.

Of course, a natural question to ask at this point would be, "Do we have the above

theorem when we have an in�nite product of topological spaces?" The answer is
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"yes," if we equip the product space with the product topology. That is, X =∏
i∈I Xi, where I is any index set and X has the product topology, is connected if

and only if Xi is connected for all i ∈ I. It is not the case, however, if X has the

box topology. It is not di�cult to �nd examples in the literature where each Xi is

connected yet the product space X, with the box topology, is not connected.

We now wish to prove that R, with the usual topology, is connected. Recall the fact

from an earlier section that every bounded subset of R has a least upper bound.

Theorem 6.4.12. The set R, with the usual topology, is connected.

Proof. First, we want to show I = [0, 1] is connected. To this end, suppose A and B

form a separation of I. Then 1 must be an element of one of them. Without loss of

generality, suppose 1 ∈ A. Since A is open, there exists a set of the form (c, 1] such

that (c, 1] ⊆ A. Thus, s = supB ̸= 1. Well, s ∈ [0, 1] so s ∈ A or s ∈ B. Since A

and B are open, whichever set contains s must also contain an open neighborhood of

s. But, any open neighborhood containing s would contain elements of B (otherwise

s would not be the least upper bound for B) and elements of A (otherwise s would

not be an upper bound for B at all). Either way, this is a contradiction. Thus, no

such separation exists and so I = [0, 1] is connected.

Now, for n ∈ Z+, In = [−n, n] is connected since it is homeomorphic to I. Then,

R = ∪n∈Z+ [−n, n] is connected since it is the union of connected spaces which all

have the point 0 in common.

Since R is connected, we can now use Theorem 6.4.11 to see that Rn is connected,

for all n ∈ Z+. Also, since Cn is homeomorphic to R2n, we also have that Cn is

connected, for all n ∈ Z+. Note that we also showed in the proof of the last theorem

that the interval [0, 1] is connected and, since [0, 1] is homeomorphic to [a, b] for any

a, b ∈ R with a < b, we also have that [a, b] is connected. This is worth making a

corollary.
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Corollary 6.4.13. The interval [a, b], where a, b ∈ R and a < b, is connected.

Our last goal for this section is to prove the Intermediate Value Theorem from our

calculus classes by proving a theorem which is slightly more general. The Interme-

diate Value Theorem will then be a corollary.

Theorem 6.4.14. Let (X, τ) be a connected topological space and let σ be the usual

topology on R. Let f : (X, τ) → (R, σ) be continuous. If a, b ∈ X and r is an element

of R strictly between f(a) and f(b), then there exists c ∈ X such that f(c) = r.

Proof. Let f : (X, τ) → (R, σ) be continuous, where (X, τ) is connected. Let a, b ∈ X

and suppose r is strictly between f(a) and f(b). Consider the sets A = f(X) ∩
(−∞, r) and B = f(X) ∩ (r,∞). Clearly, A and B are disjoint. Also, one of the

sets contains f(a) while the other contains f(b) so neither set is empty. Also, both

A and B are open subsets of f(X) with the subspace topology. If there exists no

c ∈ X such that f(c) = r, then A and B would form a separation of f(X) but we

know, from Exercise 6.4.5, that f(X) is connected. Thus, there must exist c ∈ X

such that f(c) = r.

Corollary 6.4.15. (Intermediate Value Theorem) Let σ be the usual topology

on R and let a < b. Suppose f : ([a, b], σ|[a,b]) → (R, σ) is continuous and r ∈ R is

strictly between f(a) and f(b). Then there exists c ∈ (a, b) such that f(c) = r.

De�nition 6.4.16. Let X be a set. We say a function f : X → X has a �xed

point if there exists x ∈ X such that f(x) = x.

There are many theorems which prove the existence of �xed points for certain types

of functions de�ned on various types of topological spaces (such theorems are called

�xed-point theorems). Fixed-point theorems are used in many applications, including

image processing. The reader is asked to prove one �xed-point theorem below.
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Exercise 6.4.17. Let f : [a, b] → [a, b] be continuous, where [a, b] is a closed interval

in R with the usual topology. Prove that f has a �xed point. Hint: De�ne a function

g(x) = f(x)− x on [a, b] and use The Intermediate Value Theorem.
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