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12 CHAPTER 6. PROPERTIES OF TOPOLOGICAL SPACES

In this chapter, we investigate some of the important properties of topological spaces.
Specifically, we will discuss, what are called the separation axioms, as well as compact
spaces, locally compact spaces, and connected spaces. We will also look at some of

the consequences of topological spaces having these properties.

6.1 Separation Axioms

Some of the topologies discussed in Chapter 3, while having pedagogical uses, are
otherwise quite useless in applications. Take for example the indiscrete topology and
the discrete topology which are so exclusive and inclusive, respectively, that they
render the topological structure virtually meaningless. What we would like to find is
some kind of "happy medium" where we include enough sets to make the topology
useful and interesting without overdoing it. It turns out that the way to do this is
to construct topologies rich enough to distinguish between different objects (whether

they be points or sets) in the space.

Definition 6.1.1. We say a topological space (X, 7) is a To-space, or say 7 is Tp, if
for every distinct x1, 9 € X, there exists O € 7 such that O contains x; and not z-

or O contains x5 and not x.

Example 6.1.2. (i) The standard example of a Ty-space is R with the right ray
topology. Given any two points a,b € R, we can find an open set that contains
one and not the other. Indeed, if a < b, then (a,00) is an open set which
contains b but not a. Notice though, and this is important, there does not exist

an open set which contains a and not b. This is not required of a Ty-space.

(ii) If X has more than one element and the indiscrete topology 7, then (X, 7) is

not a Ty-space.

Definition 6.1.3. We say a topological space (X, 7) is a Ti-space, or say 7 is 17,
if for every distinct x1,zo € X there exists O; € 7 such that z; € Oy and x5 ¢ Oy,
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and there exists Oy € 7 such that x5 € Oy and x; & O,.

Obviously, every Ti-space is Tp.

Example 6.1.4. (i) If X = {1,2} and 7 = {0, {1},{1,2}}, then (X,7) is a Tp-
space but not a Ti-space since, given two points in X (obviously, 1 and 2), we
can find an open set which contains 1 and not 2 but we cannot find an open

set which contains 2 and not 1.

(ii) The right ray topology on R is another example of a topology which is Ty but
not 77, as we have already discussed how, given a,b € R, where a < b, we
can find an open set containing b and not a, but we cannot find an open set

containing a and not b.

(iii) If we equip R with the finite complement topology 7, then (R, 7) is a T}-space.

The proof of this is part of a later exercise.

One characterization of a Tj-space is given in the following theorem.

Theorem 6.1.5. A topological space is a Ti-space if and only if every singleton s

closed.

Proof. First, supppose (X, 7) is a Ti-space. Let x € X. Then, for every y € X \ {z},
there exists O, € 7 such that y € O, and « ¢ O,. Then {2}° = Uyex\(sjOy € 7.

Hence, {x} is closed.

For the other direction, suppose all singletons in X are closed. Let x,y be distinct
elements of X. Since {x} is closed, the set {z}¢ is an open neighborhood of y that does
not contain x. Similarly, since {y} is closed, the set {y}¢ is an open neighborhood of

x that does not contain y. Thus, (X, 7) is a Tj-space. O

Definition 6.1.6. A topological space (X, ) is called a T,-space, or Hausdorff
space, if for every distinct z1, x5 € X, there exists O,0y € 7 such that z; € Oy,

Ty € Oy, and O; N Oy = (). In this case, we also say 7 is T, or Hausdorff.
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Obviously, every Thr-space is a Tj-space. Also, it is clear that every metric space is
a Th-space. Nevertheless, it will be given as a proceeding theorem because of its

importance.

Theorem 6.1.7. Let (X,d) be a metric space. Then the topology generated by d is
Hausdorff.

Proof. Indeed, if (X, d) is a metric space and x and y are distince elements of X, let

r = 1d(z,y). Then By(z,r) and By(y,r) are disjoint open neighborhoods of z and

1y, respectively. O]

Exercise 6.1.8. Consider R with the finite complement topology 7. Prove 7 is T}
but not 715.

Analysts almost exclusively deal with Hausdorff topologies for one very important

reason, as the next theorem illustrates.

Theorem 6.1.9. Let (X, 7) be a Hausdorff topological space. Then the limit of any
net in X is unique. That is, if (x))aen 15 a net in X and x) A z1 and Ty A xo, for

some x1,T9 € X, then x1 = x.

Proof. Let (X, 7) be Hausdorff and suppose (z,)xea 18 a net in X such that ), — x4
and ), — x9, for some x1, x5 € X. Suppose x; # z5. Then there exists U, Us € 7
such that x; € Uy, 29 € Uy, and U; NU, = (. Since x\ — x7, there exists A\ € A
such that, for all A > A\, we have that x) € U;. Similarly, since x) — x5, there exists
Ao € A such that, for all A > Xy, we have that x, € U,. Then, pick A\ € A where
A > A and A > Ay and we have that ), € U; N U, = (0, which is a contradiction.

Therefore, it must be the case that x; = 5. ]

Recall that sequences are just a special type of net, so the above theorem tells us

that, in a Hausdorff topological space, sequences have unique limits.
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Since weak topologies are often used in analysis, and we have just seen why it is
important for topologies in analysis to be Hausdorff, we would like to have condi-
tions which imply a weak topology is Hausdorff. Our next theorem provides such

conditions.

Theorem 6.1.10. Let X be a set and let (X;,7;) be a Hausdorff topological space,

foralli e I. Let F = {f; : X — Xi|i € I} and let T be the weak topology on X
generated by F. If F separates points, then 7 is Hausdorff.

Proof. Let xy and x5 be distinct points in X. Since F separates points, there exists
i € I such that f;(z1) # fi(zo. Since X; is Hausdorff, there exists Uy, U, € T
such that fi(z,) € Uy, fi(zs) € Uy, and Uy NUy = §. Then z, € f71(U)) € 7,
1y € f71(Uy) €7, and f;1(U) N f7H(Us) = 0. Hence, 7 is Hausdorff. O

Exercise 6.1.11. (i) Let (X,7) be a Hausdorff topological space and let A C X.
Prove that A with the subspace topology is a Hausdorff space.

(ii) Let (X;,7;) be a Hausdorff topological space for all i € I. Prove that [[.., X;
with the product topology is a Hausdorff space.

Exercise 6.1.12. Let (X, 7) and (Y, o) be homeomorphic topological spaces. Prove
(X, 7) is a Hausdorff space if and only if (Y, o) is a Hausdorff space.

We will now give the remaining two separation axioms although we will not discuss

them in detail.

Definition 6.1.13. We say a topological space (X, 7) is regular if, whenever C' is
a closed subset of X and = ¢ C, there exists Oy, Oy € 7 such that C' C Oy, z € Ox,
and 01 N 02 == @

As we saw in Theorem 6.1.5, singletons are not all closed unless the topological

space is a Ti-space, thus, regular spaces are not necessarily Hausdorff. If we make
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the further requirement that a regular space be T}, then we get the next separation

axiom.

Definition 6.1.14. If a topological space is a regular Ti-space, then we say it is a
Ts-space.

If a regular topological space is a Tj-space, so that singletons are closed, then it is
obviously Hausdorff.

The last separation axiom is given in the following definition.

Definition 6.1.15. A topological space (X, 7) is normal if, given disjoint closed
subsets A; and A of X, there exist disjoint 01,0, € 7 such that A; € O; and
Ay C O,. If (X, 7) is also a Ti-space, then we say (X, 7) is a Ty-space.

Clearly, a Ty-space is a T3-space.

6.2 Compact Spaces

Definition 6.2.1. Let (X, 7) be a topological space. An open cover of X is a
collection C C 7 such that X = UpecO. Given an open cover C, a finite subcover
is a finite subset Cy of C such that X = Upec,O.

Definition 6.2.2. We say a topological space (X, 7) is compact if every open cover

of X has a finite subcover.

Example 6.2.3. (i) The set R with the usual topology is not compact since C =

{(=n,n)|n € Z,} is an open cover of R which has no finite subcover.

(ii) Let (X,7) be a topological space where X is finite. Then (X,7) must be

compact since every open covering would be finite.



6.2. COMPACT SPACES 17

(iii) Consider X = {|n € Z,} as a subspace of R with the usual topology. Then
X is compact. Indeed, let C be an open covering of X. Then there exists
O € C which contains 0. Thus, we can find € > 0 such that (—e,e) N X C O.
So, for some N € Z,, we have that for all n > N, the point % € O. Now,
for k = 1,...,N — 1, there exists O, € C such that % € O and so C, =
{O4,...,0n_1,0} is a finite subcover of X.

(iv) The interval [0, 1), as a subspace of R with the usual topology, is not compact

since C = {[0,1—1)|n € Z.} is an open cover of [0, 1) with no finite subcover.

Next, we want to prove that every interval of the form [a, b], as a subspace of R with

the usual topology, is compact. We first need a fact about the real numbers.

Definition 6.2.4. Let A be a subset of R. We say b € R is an upper bound for A
if a <bforalla e A. We say b € R is the least upper bound of A if b is an upper
bound for A and if by is another upper bound for A, then b < by. In this case, we
also refer to b as the supremum of A, and write b = sup A. Similarly, we say ¢ € R
is a lower bound for A if ¢ < a for all a € A. We say ¢ € R is the greatest lower
bound of A if ¢ is a lower bound for A and if ¢; is another lower bound for A, then

co < c. In this case, we also refer to ¢ as the infimum of A, and write ¢ = inf A.

Fact: Every nonempty subset of R which has an upper bound, has a supremum
(that is, has a least upper bound) and every nonempty subset of R which has a lower

bound, has an infimum (that is, a greatest lower bound).

Whether the above fact is a theorem or an axiom depends on how we define the real
numbers. Most modern analysis textbooks have it as an axiom and so it is a defining
characteristic of the real numbers. That is, the real numbers are the smallest set

containing the rational numbers where the above fact is true.

Theorem 6.2.5. Let a,b € R, where a < b. The interval [a,b], as a subspace of R

with the usual topology, is compact.
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Proof. A closed interval [a, b] in R with the subspace topology is compact. Let C be
an open cover of [a,b]. Let D be the set of all points d in [a,b] such that a finite
subcollection of C covers [a,d]. Clearly, a € D so D is nonempty. Since b is an upper
bound for D, the set D has a least upper bound. Let d = sup D. Since there exists
O € C such that a € O, we can find § > 0 such that [a,d) C O so, for any z € [a, ),
we have that x € D. Thus, d # a.

If d = b then we are done so suppose d < b. Since C is an open cover of [a, b] and
d € [a,b], there exists O € C such that d € O. Since a < d < b, there exists € > 0
such that (d —e,d +€) C O. Since d is the least upper bound of D, there exists
¢ € (d —€,d) such that ¢ € D (if not, d — € would be an upper bound for D which
is less than d). Thus, there exists a finite subcover Cy of [a,c|. But then, for any
e € (d,d+ ¢€), the collection Cy U{O} is a finite subcover of [a, e] which implies that
e € D. This contradicts the fact that d is an upper bound for D. Thus, we must have

that d = b and so there exists a finite subcover for [a, b] and so [a, b] is compact. [

In a first course of analysis, we learn that a subset K of R or R" is compact if and
only if every sequence in K has a subsequence which converges to some k € K. This
is not true for a general topological space. We call such spaces with this property

sequentially compact.

Definition 6.2.6. A topological space (X, 7) is called sequentially compact if

every sequence in X has a convergent subsequence.

For a general topological space, we have to replace sequences in the above definition
with nets. This result will be given in Theorem 6.2.9. First, we need to look at

another way to characterize compact spaces for general topological spaces.

Definition 6.2.7. We say a collection of sets C = {C;|i € I} has the finite inter-
section property if for every finite subset F' C I, we have that N;cpC; # 0.

Theorem 6.2.8. A topological space (X, T) is compact if and only if every family of

closed sets with the finite intersection property has nonempty intersection.
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Proof. First, suppose (X, 7) is compact. Let C = {C;|i € I} be a family of closed
sets with the finite intersection property. Suppose Nic;C; = 0. Then X = U, CF
is an open cover of X. Since X is compact, there exists a finite set F© C [ such
that X = U;epC¥, but then M;crC; = () contradicting the fact that C has the finite

intersection property.

For the other direction, suppose every family of closed sets with the finite intersection
property has nonempty intersection. Let O = {O;|i € I} be an open covering of X.
If (X, 7) is not compact, then, for every finite F' C I, we have that X # U;crO; and
30 NierOf # 0. Thus, C = {O¢|i € I} has the finite intersection property. By our
assumption, we then have that N;c;Of # 0 and so U;c;O; # X, contradicting the fact

that O is an open cover of X. Therefore, we must have that (X, 7) is compact. [

Theorem 6.2.9. A topological space (X, T) is compact if and only if every net in X

has a convergent subnet.

Proof. First, suppose (X, 7) is compact. Let (x))xea be a net in X. To show (z))en
has a convergent subnet, it suffices to show, by Theorem ?7 that (x))yea has a
cluster point. Let C\ = {x3| 8 > A}, for all A € A. Let C = {C\| A € A}.

We now want to prove the family C has the finite intersection property. Let F' =
{AM, A, A Pick Ag > A, for all & = 1,2,...,n. Then z,, € C),, for all
k=1,2,...,ns0N{_,C\, # 0. Then, since X is compact, we have NycaC) # 0. Let
x € NMyeaCy. We want to show z is a cluster point. Let U be an open neighborhood
of z. Let Ay € A. Since x € NyepC), we have that z € C), = W—Z)\o}, we have
that U N {zs| 8 > Ao} # 0. So, there exists A > Ag such that z) € U. Thus, x is a

cluster point.

For the other direction, suppose C = {C;|i € I} is a family of closed sets with the
finite intersection property. Let P be the set of all finite subsets of I with an order
defined by F; < Fy if and only if F} C F,. For F € P, we have that N;cpC; # 0,

so let zr € NjepC;. Thus, we have a net (rr)pep. By assumption, the net (zp)pep
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has a cluster point x. We now want to prove that x € C; for all ¢ € I. Let iy € 1.
Let U be an open neighborhood of x. Then, for Fy = {iy}, there exists [’ > Fj, such
that xzp € U. Since F > Fy, we have that ig € F. Also, we have zp € N;crC;, so
xp € C,. Hence, UNC;, # (). Thus, = € C_zo = C;,. Therefore, v € C;, for all i € I
and so x € N;e;C;. O

While it was mentioned in the proof above that, because of Theorem 7?7, Theorem
6.2.9 is equivalent to the statement that a space is compact if and only if every net

has a cluster point, it is worth stating as a following corollary.

Corollary 6.2.10. A topological space (X, T) is compact if and only if every net in

X has a cluster point.

Exercise 6.2.11. (i) Let (X, 7) be a compact space. Prove that every closed set
Ain X is compact (when A is equipped with the subspace topology).

(ii) Let (X,7) be a Hausdorff space. If A is a compact subset of X, then A is

closed.

Exercise 6.2.12. Prove that the continuous image of a compact space is compact.
That is, suppose (X,7) and (Y, o) are topological spaces and f : (X,7) — (Y, 0) is
continuous. Prove that if (X, 7) is a compact space, then f(X) is a compact subspace
of (Y,0). Conclude that if (X, 7) is homeomorphic to (Y, o) then (X, 7) is compact
if and only if (Y, o) is compact.

Our next goal is to prove Tychonoff’s Theorem which states that a product of topo-
logical spaces, with the product topology, is compact if and only if each factor in
the product is compact. We first need a remark and a few definitions. The proof
provided in these notes follows a proof given by Chernoff in 1992 in a paper titled,

"A simple proof of Tychonoft’s Theorem via nets."
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Remark 6.2.13. If (X, 7;) is a topological space, for all i € I and we let X =
[L;c; Xi with the product topology, then any basic open set N in X is of the form

N =7 'Uy) Nr, (Uy) N0 1 (U;,) (6.1)

for some n € Z,, where U;, € 7y, for all j = 1,...,n. If we let F' = {i1,ia,...,in},
then we will denote the basic open set N in Equation (6.1) by N = N{U,|j € F'}.

Definition 6.2.14. Let (X;, 7;) be a topological space, for all i« € I and let X =
[L;c; Xi with the product topology. If J C I, then we say g € []
defined member of X. Let (f)\)aea be a net in X. Suppose g, with domain J, is

.y Xi is a partially
a partially defined member of X. We say ¢ is a partial cluster point of (f\)xea
if, given \g € A, for every finite subset /' C J and every basic open neighborhood
N{U;|j € F} of g in [],.; X, there exists A\ € A, where A > ), such that, for all
j € F, we have that f\(j) € U;. Or, equivalently, ¢ is a partial cluster point for
X; for the net (fi]s)aea-

ieJ

(f\)xea if g is a cluster point in [],_,

Theorem 6.2.15. (Tychonoff’s Theorem) Let (X;,7;) be a topological space for

all i € 1. Then X = [[,.; Xi with the product topology is compact if and only if
(X, 1) is compact for every i € I.

Proof. First, suppost X is compact. Let ¢ € I. Since the projection map m; : X — X;

is continuous, by Exercise 6.2.12, we have that m;(X) = X is compact.

Now, for the other direction, suppose (X;, 7;) is compact, for all i € I. We want to
show that every net in X has a subnet which converges to an element of X. Since a
net has a convergent subnet to a point g if and only if g is a cluster point for the net,
it suffices to show that every net in X has a cluster point. To this end, let (f))xea
be a net in X. Our goal is to show that there exists a partial cluster point g, with

domain J, such that J = I. Then g is a cluster point for (f))xea.

To this end, let P be the set of all partial cluster points of (fy)xea. The set P is
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nonempty since the empty function is an element of P. Let ¢;,g2 € P, where J;
is the domain of g; and J; is the domain of g,. Define a partial ordering on P by
g1 < go if and only if J; C Jy and ¢1(j) = g2(j), for all j € J;. We now want to
show P has a maximal element by using Zorn’s Lemma. Let C = {g.| @ € A} be a
chain in P. Define gy = Unecaga (where we think of g, as a subset of J, X (U;e;X;)).
Since C is totally ordered, it is easy to see that g is a partially defined member of
X with domain U,eaJ, and that, since each g, is a partial cluster point for (f))aea,
the function gg is also a partial cluster point for (f))rea. Hence, go € P. Clearly, go

is an upper bound for C. Thus, by Zorn’s Lemma, P contains a maximal member g.

We now wish to show that if J is the domain of g, then J = I. Suppose not. Let

k € I\ J. Since g is a cluster point in [[,.; X; for (fx]/)aea, there exists a subnet

ieJ
(faul7)uen such that fy [; £ ¢. Since X is compact and (fr.(E))uens is a net in
Xk, (fr.(k))uenm has a cluster point p in Xj. Define a function h on J U {k} by
h(j) = g(j), for all j € J and h(k) = p. Then h is a partial cluster point of (fy)xea,
so h € P, and h > g, which contradicts the maximality of g in P. Hence, we must

have that J = I and so g is a cluster point of (f)xea. Therefore, X is compact. [

Tychonoff’s Theorem has many important applications. As Stephen Willard wrote
in his textbook General Topology, "the theorem just proved (Tychonoff’s Theorem)
can lay good claim to being the most important theorem in general (nongeometric)
topology." One application of Tychonoft’s Theorem is the Heine-Borel Theorem. We

first need to define bounded sets in metric spaces.

Definition 6.2.16. Let (X, d) be a metric space and let A C X. We say the set
A is bounded if there exists + € X and r > 0 such that A C By(z,r). We say a
sequence (z,)%°; is bounded if the set {x,|n € Z,} is bounded.

Exercise 6.2.17. Let (X, d) be a metric space and let (z,)°2; be a sequence in X.

n=1

If (z,)5°, converges, then (z,)7°; is bounded.
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Theorem 6.2.18. (Heine-Borel Theorem) A subset of R™ with the usual topology

s compact if and only if it is closed and bounded.

Proof. Let A C R"™.

First, suppose A is compact. By Exercise 6.2.11, since R" is Hausdorff and A is
compact, we have that A is closed. To show A is bounded, let C = {By(z,1)NA|z €
A}, where d is the usual metric on R™. Then C is an open cover of A so there exists
a finite subcover. That is, there exists n € Z, and xy,29,...,2, € A such that
A CUp_ By(z,1). Let r = max{|xy],|z2],..., |z} + 1. Then A C By(0,r) and so
A is bounded.

Now, suppose A is closed and bounded. Since A is bounded, A C B(0, M), for some
M > 0. Hence, A C [—M, M|" which is compact by Tychonoff’s Theorem. Thus, A
is a closed subspace of a compact space and so, by Exercise 6.2.11, we have that A

is compact. O

Since C™ with the usual topology is homeomorphic to R?", the Heine-Borel Theorem

also tells us that subsets of C™ are compact if and only if they are closed and bounded.

One statement whose proof is easily extracted from our proof of the Heine-Borel

Theorem is that if we have a compact subset of a metric space, then it is closed and
bounded.

Corollary 6.2.19. Let (X,d) be a metric space and let A C X. If A, with the

subspace topology, is compact, then A is closed and bounded.

Proof. Since metric spaces are Hausdorff, by Exercise 6.2.11, we have that A is closed.
To show A is bounded, consider C = {By(z,1) N A|x € A}. Clearly, C is an open
cover of A. Since A is compact there must exist n € Z, and zq,...,x, € A such
that A = U}_, Ba(zx, 1). Let r = max{d(z1,zx)| k € Z,} + 1. Then A C By(xy,r)
and so A is bounded. O
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In an analysis course, one important fact about a continuous functon f : A — R,
where A C R", is that if A is compact, then the function f is bounded. We can now

prove this statement in much more generality as the next exercise shows.

Exercise 6.2.20. Let (X,7) be a compact topological space and let (Y,d) be a
metric space. If f: (X,7) — (Y,d) is continuous, then f(X) is bounded.

We can actually quite a bit more in the above exercise if the metric space (Y,d) is

R with the usual metric.

Theorem 6.2.21. (Extreme Value Theorem) Let (X, 7) be a compact topological
space and let f: (X, 7) — (R, 0) be continuous, where o is the usual topology on R.
Then there exist x1,x9 € X such that f(x1) < f(z) < f(xq) for all x € X.

Proof. Since (X, 7) is compact and f is continuous, we have that f(X) is a compact
subset of R. By the Heine-Borel Theorem, we then have that f(X) is closed and
bounded. Since f(X) is bounded, we know s = sup f(X) exists. If s is not a limit
point of f(X), then there exists € > 0 such that (f(X)N(s—e€,s+¢€))\{s} =0. But
then, any y € (s — ¢, s) would be an upper bound for f(X) and would be less than
s, contradicting the fact that s is the least upper bound. Thus, we must have that s
is a limit point of f(X). Then, since f(X) is closed, we must have that s € f(X).
Thus, there exists x5 € X such that f(x2) = s and so f(z2) > f(z) for all z € X.
A similar argument shows there exists 1 € X such that f(z;) = inf f(X) and so
f(z1) < f(x) for all z € X. O

It should be stressed that while compact implies closed and bounded in a metric
space, the converse is not necessarily true. That is, in a general metric space, closed
and bounded does not imply compact. This illustrates the significance of the Heine-
Borel Theorem. If our metric space is R™ with the usual metric, then the converse

is true.
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It is worth noting that the concepts of sequential compactness and compactness are
not weaker or stronger assumptions than the other. There are examples of compact
spaces which are not sequentially compact and there are examples of sequentially
compact spaces which are not compact. In many instances, checking that a space is
sequentially compact tends to be easier than checking whether every open covering
has a finite subcovering so it would be nice to have an easy way to know when the
two types of compactness are equivalent. The next theorem tells us that a metric

space is sequentially compact if and only if it is compact. We first need two lemmas.

Lemma 6.2.22. (Lebesgue Number Lemma) Let (X,d) be a sequentially com-
pact metric space. If O is an open cover of X, then there exists 6 > 0 such that, for
each x € X, there exists O € O such that By(x,0) C O.

Proof. Suppose not. Let O be an open covering for X. Then for all § > 0, there
exists x € X such that By(x,d) € O, for all O € O. In particular, for all n € Z,,
there exists z, € X such that Bd(xn,%) Z O, for all O € O. Thus, we have
defined a sequence (z,,)7, in X. Since (X, d) is sequentially compact, there exists a
subsequence (z,,)7>; and € X such that x,, — x. Since O is an open cover of X,
there exists O € O such that x € O. Since O is open, there exists ¢ > 0 such that
By(z,e) C O. Since x,, — x, there exists Ky € Z, such that, for all £ > K, we

have d(x,,,r) < §. Pick k > K so that n—lk < 3.
Claim: By(x,,, n—lk) C By(x,e).

Indeed, for o € By(xy,, %), we have that d(zg, x,,) < - < 5. So

1
g

[T

d(IO,I) S d(x()"r”k) + d({L’nk’Qj‘) < g + % = €.

L) C By(z,¢) CO and O € O, so this is a contradiction. O

Nk

Thus, By(x,,

Given an open covering, a number ¢ satisfying the conditions in the lemma above is
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called a Lebesque number for the covering which is the reason for the lemma’s title.

Lemma 6.2.23. If (X, d) is a sequentially compact metric space, then, for all € > 0,

there exists n € Z, and x1,xs,...,x, € X such that

X = U Bd(l’k,ﬁ).
k=1

Proof. We will proceed with a proof by contrapositive so suppose there exists ¢ > 0

such that, for any n € Z; and all 21, z, ..., 2, € X, we have that X # U}_, By(zy, €).

Let ;7 € X. By our assumption, X # By(x1,€) and so pick x5 € X such that
xo ¢ Bg(xi,€). Again, by our assumption, X # By(z1,€) U Bg(xs,€) so pick
xg3 € X such that z3 ¢ Bg(x1,€) U By(za,€). For n > 2, suppose we have de-

fined 1, 7,...,7, 1. By our assumption, X # U}_{By(wy,€) so let ¥, € X such

[e.e]

that x,, ¢ U}—| By(y,€). Thus, using induction, we have defined a sequence (z,,)22,

such that x,, ¢ UyZ| Bq(zy,€), for all n € Z,.

We now claim that (z,)5, has no convergent subsequence. Indeed, for n,m € Z,
such that n > m, we have that x, ¢ Bg(x,,€) and so d(z,,z,) > €. Thus, the
distance between any two distinct terms in the sequence must be at least € and so it

cannot have a convergent subsequence. O]

Theorem 6.2.24. Let (X, d) be a metric space. Then (X, d) is sequentially compact

if and only if it s compact.

Proof. Suppose (X, d) is sequentially compact. Let O be an open cover of X. From
Lemma 6.2.22, there exists 6 > 0 such that, for all x € X, there exists O € O such
that By(z,d) € O. By Lemma 6.2.23, there exists n € Z, and xy,29,...,2, € X
such that

X = U Bd(xk,(S)
k=1
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But, for each k = 1,2,...,n, there exists Oy € O such that By(zx,d) C Ok. Thus,
X = U0 and so {O1,0,,...,0,} is a finite subcover of O and so (X,d) is

compact.

We will prove the backwards direction by proving the contrapositive so suppose (X, d)
is not sequentially compact. Then there exists a sequence (z,,)°; in X which has
no convergent subsequence. Let z € X. Then there exists 0, > 0 so that, at most,
only finitely many terms from (z,,)°; are contained in By(z,,) (If not, then for all
e > 0, we would have infinitely many terms from the sequence contained in By(z, €)

thus allowing us to construct a subsequence which converges to z). Then, we have

X = U Bd(z,éz)
zeX
and so O = {By(z,0,)|z € X} is an open cover of X. But, for any n € Z, and

21,29, .. .,%n € X, we have
X # U Ba(zk,04,)
k=1

(e o]

since each Bgy(zy,d,,) contains only finitely many terms from the sequence (z,)52,

and so there must exist terms from the sequence which are not contained in U}_, By(2y, 65, ).

Hence, O does not have a finite subcover and so (X, d) is not compact. ]
A consequence of the above theorem as well as the Heine-Borel Theorem is the
Bolzano-Weierstrass Theorem. We first need a quick lemma.

Lemma 6.2.25. Let (X,d) be a metric space and let A C X. If A is bounded, then

A is bounded.

Proof. Let A be a bounded subset of X. Then there exists x € X and r > 0 such
that A C By(x, 7). Then we have that A C By(z,r) C By(z,r) and, since By(z,7) is
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closed, A C By(z,r). Thus,
A C By(x,r) C By(w,r +1)

and so A is bounded. O

Theorem 6.2.26. (Bolzano-Weierstrass Theorem) Every bounded sequence in

R™ has a convergent subsequence.

Proof. Let (2,)5°; be a bounded sequence in R". Let A = {z,|n € Z,}. Then A
is bounded. By Lemma 6.2.25, we have that A is bounded. Thus, A is a closed and
bounded subset of R”. By the Heine-Borel Theorem, A is compact. Since R” is a
metric space where compactness implies sequential compactness, we have that every
sequence in A has a convergent subsequence. In particular, (z,,)%, is a sequence in

A and, thus, it has a convergent subsequence. O

6.3 Locally Compact Spaces

Compactness is such a useful property that we often seek to involve it in spaces
which are not compact. One way we can do this is to introduce the concept of local

compactness. Let’s start with the definition.

Definition 6.3.1. A topological space (X,7) is locally compact at z,, where
xo € X, if there exists an open neighborhood U of zy and a compact subspace K of
X such that U C K. We say a topological space (X, 7) is locally compact if it is

locally compact at zqy for all o € X.

Example 6.3.2. (i) Every compact set is locally compact. Indeed, if (X, 7) is
compact, then for any xo € X, the set X is an open neighborhood of xy which

is contained in the compact set X.
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The set R with the usual topology is locally compact. Given any x € R, the
point x is an element of the open interval (x —1, z+ 1) which is contained in the
compact set [z — 1,z + 1]. The set R with the usual topology is not, however,

compact.

For any n € Z, the set R™ with the topology induced by the usual metric d is
locally compact. Given x € R™, we have that By(z,1) C By(x,1) and By(x,1)

is compact by the Heine-Borel Theorem, since it is closed and bounded.

The set R® with the product topology is not locally compact. Indeed, for

f € RE any open set containing f would contain a base element of the form
B =m((a1,01)) N Oy (@, by))

and any compact set containing B would have to contain B (since R is Haus-

dorff, by Exercise 6.2.11, part (ii) ). However,
B =m,a,b]) -0 ([, b))

and, by Tychonoff’s Theorem, B is compact if and only if 7, (B) is compact for
all z € R. But, for  # z; for i = 1,...,n, we have that 7,(B) = R which is

not compact.

Theorem 6.3.3. Let (X, 1) and (Y, 0) be topological spaces and suppose f : (X, 1) —

(Y, 0) is continuous, open, and onto. If (X, ) is locally compact, then (Y, o) is locally

compact.

Proof. Let yg € Y. Let O be an open neighborhood of yy. Since f is onto, there

exists 7o € X such that f(zy) = yo Since f is continuous, we have that f~'(O)

is an open neighborhood of zy. Since (X, 7) is locally compact, there exists an
open neighborhood U of xy and a compact set K such that f(U) C f(K). Then,

V:

UnN f71(0) is an open neighborhood of zg. Further, since f is open, the set
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f(V) is an open neighborhood of yo. Also, V' C K so f(V) C f(K). Since f is
continuous and K is compact, by Exercise 6.2.12 we have that f(K) is compact.
Thus, f(V) is an open neighborhood of yy and f(V') is contained in the compact set
f(K) and so (Y, 0) is locally compact at yo. This holds for all yo € Y and so (Y, 0)

is locally compact. O]

Exercise 6.3.4. If (X, 7) is homeomorphic to (Y, o) prove that (X, 7) is locally

compact if and only if (Y], 0) is locally compact.

Theorem 6.3.5. Let (X,,7,) be a topological space, for all oo € 1. Then [], ., Xa
is locally compact if and only if each (X, 7o) is locally compact and all but finitely

many are compact.

Proof. Suppose [[,.; Xa is locally compact. Let v € I. Since the projection map
7yt [[,e; Xo = X, is continuous, open, and onto, by Theorem 6.3.3, we have that

(X, 7,) is locally compact.

Let f € [[,c; Xa- Since J],.; Xo is locally compact, there exists a basic open
neighborhood U of f and a compact set K such that U C K. Since U is a basic open
set, there exists n € Zy, oy, as,...,0p € I, and O,, € 7,,, for all k = 1,2,... n,
such that

U=1,"(0n) N7} (On,) NNl (Og,).

Qn

Let v € I such that v # oy, for all k = 1,2,...,n. Then we have that =, (K)
is compact, since ., is continuous. And, since U C K, we have that 7, (U) C
7, (K). But, since v # ay, for all k = 1,2,...,n, we have that 7, (U) = X,. Thus,
X, = m,(K) is compact. Thus, the only X, which are potentially not compact are
Xots Xo, s X

For the other direction, suppose (X4, 7,) is locally compact for all « € I and compact
except for ay, an,...,a, € I, forsomen € Z,. Let f € [[,c; Xa. Fork=1,2,... n,

we have that f(ay) € X,,. Since X,, is locally compact, there exists an open
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neighborhood O, € 7,, of f(ax) and a compact set K,, in X,, such that O,, C K,,.
Then,
U=m,"(04)N 7r;21(0a2) N--- N7, (Og,)

Qn

is an open neighborhood of f, and

K =7, (Ka,) N7 (Koy) NNy (K,

aq (o7

is compact by Tychonoff’s Theorem (Theorem 6.2.15) since K is the product of
compact sets. Also, since O,, C K,, for all k =1,2,... n, we have that U C K.

Thus, [],.; Xa is locally compact. m

acl

Example 6.3.6. The above theorem is another way to see that R” is locally compact,

for all n € Z,. It is also another way to see that RF is not locally compact.

In Chapter 3, the motivation for defining the closure of a set A was that it was the
smallest closed set which contained A. Can we do something similar with compact
sets? That is, given a set, can we define the smallest compact set which contains it?

Let us now make this more precise.

Definition 6.3.7. Let (Y,0) be a compact Hausdorff space and let X be a proper
subspace of Y. If X =Y, then we say Y is the compactification of X.

Example 6.3.8. (i) Consider the interval [a, b] in R with the usual topology. Since

(a,b) = [a,b], then [a,b] is the compactification of (a,b).
(ii) More generally, if we consider B(z,7) in R", for some x € R™, then, since
B(z,r) = B(z,r) and B(z,r) is closed and bounded, hence compact, we have

that B(x,r) is the compactification of B(z,7).

Determining which topological spaces have compactifications and finding descrip-
tions of those compactifications is a complicated task. It turns out though, that if

a topological space is locally convex and Hausdorff, then, not only does it have a
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compactification, but the compactification is obtained by simply including one ad-
ditional point. Furthermore, this property characterizes locally compact Hausdorff

spaces as the next theorem illustrates.

Theorem 6.3.9. Let (X, 7) be a topological space. Then (X, 1) is locally compact
and Hausdorff if and only if there exists a topological space (Y, o) such that

(i) (X, 1) is a subspace of (Y, o),
(i) Y \ X is a singleton, and

(iii) (Y,0) is a compact Hausdorff space.

Further, if (Y,0) and (Y',0') are two topological spaces satisfying these conditions,
then (Y,0) and (Y',0') are homeomorphic and the homeomorphism between them is

the identity map on X.

Proof. First, suppose (X, 7) is a locally compact Hausdorff space. Pick any object
which is not an element of X and label it co. Let Y = X U {oo}. Now, define

o=1U{Y \ C|C is a compact subspace of X}. (6.2)

It is a following exercise to show that o is a topology on Y. We now want to check
that (X, 7) is a subspace of (Y, o). That is, we want to show o|x = 7. To this end,
let O € 7. Then O C X and, by construction, O € o, s0 O = ON X € o|x. Now,
let O € o|x. Thus, O = U N X, for some U € 0. f U € 7, then U C X and so
O =U € 7 sosuppose U =Y \ C, for some compact subspace C' of X. Then

O=UNX=Y\O)NX=X\Cer

since C'is closed by Exercise 6.2.11. Hence, (X, 7) is a subspace of (Y, 0).
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Now, to show (Y, 0) is compact, let O be an open covering of Y. Then there must
exist U € O of the form U =Y \ C, for some compact subspace C' of X (these are
the only sets in o which contain 0o). Now, consider Oy = {ONX|0 € O\ {U}}.
Then Oy is a collection of open sets in (X, 7). Further, if € C, then x € X, since
C C X, and z is contained in one of the members of O. Thus, x is contained in one
of the members of Oy. Hence, Oy is an open covering of C. Since C' is compact,
there exists O1,Oq,...,0, € O, for some n € Z, such that C' C U}_;0;, N X. Thus,
the collection {O1,0,,...,0,,U} is a finite subcover of O, and so Y is compact.

To see that (Y, o) is Hausdorff, let z,w € Y, where z # w. If z,w € X, then, since
(X, 7) is Hausdorff, there exists U,V € 7 such that z € U, w € V, and U NV = ().
Since 7 C o, we have what we need. The other possibility is that z € X and w = oo.
Since (X, 7) is locally compact, there exists U € 7 and a compact set K such that
2€UCK. ThenzeUerCo,weY\Keo,and UN (Y \ K) = (. Thus,
(Y, o) is Hausdorff.

Next, to prove the backward direction, suppose (X, 7) is a subspace of a compact
Hausdorff space (Y, o) (note then that o]y = 7) where Y\ X = {oo} (the set Y\ X
contains exactly one element which we will label co). We just have to show (X, 1)
is Hausdorff and locally compact. We know (X, 7) is Hausdorff by Exercise 77 since
it is a subspace of a Hausdorff space so we are left to show that (X, 7) is locally

compact.

Let xy € X. Since (Y, 0) is Hausdorff, let U,V € o such that o € U, co € V, and
UNV =0. Let C =Y \ V. Then C is a closed subspace of Y and so compact by
Exercise 6.2.11. Note that co ¢ C, since co € V, thus C' C X. Since 7 = o|x, we
have that C' is a compact subspace of (X, 7). Further, since co ¢ U we have that
U C X, and, since UNV = (), we have that U C C. Thus, we have found U € 7 and
a compact subspace C of X such that xy € U C C. Thus, (X, 7) is locally compact.

Lastly, we have to show that if (X, 7) is locally compact and we find two topological
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spaces (Y, o) and (Y’ 0’) satisfying properties (i)-(iii), then there exists a homeo-
morphism A : (Y,0) — (Y, 0’) such that h|x(z) = z, for all x € X. To this end,
suppose we have two such topological spaces. Let oo be the sole element of Y\ X
and let 0o’ be the sole element of Y’ \ X. Define h : Y — Y’ by h(z) = z, for all
x € X, and h(oco) = od’. Clearly, h is bijective.

Let U € 0. We want to show h(U) € o',

Case 1: The point oo ¢ U. Then U C X and so U € 7. Since (X, 7) is a subspace
of (Y’',o') and X € ¢’ (since singletons are closed in Hausdorff spaces), we have that
U € ¢'. Then, since U C X, we have h(U) =U € o'

Case 2: The point co € U. Let C =Y \ U. Then C is a compact subspace of Y,
since C'is closed and Y is compact. Further, co ¢ C so C' is a compact subspace of

X. Then, we have that C is a compact subspace of Y. Since Y’ is Hausdorff, by
Exercise 6.2.11, the set C' is closed in Y’. Then, h(U) =Y’ \ C € o'

Hence, for all U € o, we have that h(U) € ¢’. A symmetric argument shows that
for all U € o', we have h™'(U) € o. Thus, h is a homeomorphism and the proof is
complete. O

Exercise 6.3.10. Prove that the collection o defined in Equation (6.2) of Theorem
6.3.9 is a topology.

Thus, locally compact Hausdorff spaces are precisely the spaces constructed when

we take a compact Hausdorff space and punch a single hole in them.

Definition 6.3.11. Let (Y, o) be a topological space and let X be a proper subspace
of Y. If Y is the compactification of X and Y \ X is a singleton, then we say Y is

the one-point compactification of X.

Theorem 6.3.9 tells us that the only topological spaces with one point compactifica-

tions are locally compact Hausdorff spaces which are not themselves compact. The
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fact that one-point compactifications are unique up to homeomorphism justifies the

language being used in the above definition when we say the one-point compactifica-

tion, rather than a one-point compactification. Also note that the proof of Theorem

6.3.9 provides a way for us to construct the one-point compactification of a locally

compact Hausdorff space.

Example 6.3.12. (i) If we let S; be the unit circle in R? with the north pole

(iii)

deleted (that is, the point (0,1)), then S, is clearly locally compact and Haus-

dorff and its compactification is 57.

We have already seen that R with the usual topology is locally compact and
Hausdorff. Thus it must have a one-point compactification. Indeed, if we define

h:R— S (where S, is given in the previous example), by

h(t) = <cos (2arctan (t)) — g, sin (2 arctan (t)) — g)
then we see that R is homeomorphic to S and thus the one-point compactifi-

cation of R is homeomorphic to S;.

In a similar fashion, if we let S, be the unit sphere in R?® with the north pole
missing (the point (0,0,1)), then R? with the usual topology is homeomorphic
to Sy which obviously has Sy as its compactification. Thus, the compactification
of R? is homeomorphic to S,. Further, since we have already seen that C is
homeomorphic to R?, the one-point compactification of C is also S,. We often
denote the one-point compactification of C by C U {oc}, where oo is obviously
the new element included with C to make it compact, and refer to CU {oco} as

the extended complex plane.
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6.4 Connected Spaces

Definition 6.4.1. Let (X, 7) be a topological space. A separation of X is a pair of
disjoint nonempty sets U,V € 7 such that X = U UV. We say the topological space
(X, 7) is connected if there does not exist a separation of X. We say a topological

space (X, 7) is disconnected if it is not connected.

Exercise 6.4.2. Prove that a topological space (X, 7) is disconnected if and only if
there exist disjoint closed sets A and B such that X = AU B.

Example 6.4.3. (i) Obvious examples to build intuition would be to take X =
[1,2] U [3,4] with the usual topology. Then, with the subspace topology, [1, 2]

and [3,4] are both open sets so X is not connected.

(ii) If we instead take X = [1,2] with the usual topology, then there does not exist

a separation of X so X is connected.

Another way to characterize connected spaces is given in the following theorem.

Theorem 6.4.4. A topological space (X, 1) is connected if and only if the only clopen
sets in X are ) and X.

Proof. Suppose (X, 7) is connected. If there exists a set A C X which is clopen,
where A # () and A # X, then A is open and A€ is open (since A is closed) and so

A and A€ form a separation of X. This is a contradiction and so no such A exists.

Now, suppose the only clopen sets in X are () and X. If X is disconnected, then
there exist disjoint nonempty open sets U and V such that U UV = X. Then, we
have that U¢ = V and, since U is open, V = U€ is closed. Thus, V is clopen and
V' =+# emptyset and V # X. This is a contradiction. Thus, no such separation

exists. OJ
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Exercise 6.4.5. Prove that the continuous image of a connected space is connected.
That is, suppose (X, 7) and (Y, o) are topological spaces and f : (X,7) — (Y,0)
is continuous. If (X, 7) is connected, then f(X) as a subspace of Y, is connected.
Conclude that if (X, 7) is homeomorphic to (Y, o) then (X, 7) is connected if and

only if (Y, o) is connected.

Subspaces of connected spaces are not necessarily connected. For example, [0, 10] is
connected while [0, 1]U[9, 10] is disconnected. The next few propositions inverstigate

situations when we can say something about the connectedness of subspaces.

Proposition 6.4.6. Let (X, 7) be a topological space and let Y C X. The set Y,
with the subspace topology, is disconnected if and only if there exist A, B C X such
that AUB=Y,ANB=0, and AN B = (.

Proof. Suppose Y, with the subspace topology, is disconnected. Then there exist
U,V € 7such that (UNY)N(VNY)=0andY =(UNY)U(VNY). Let A=UNY
and B=V NY. Then AUB =Y and AN B = (). Since the complement of A in Y
is B, which is open as a subspace of Y, A is closed in Y, so A = A Further, from
Theorem 77, A =4n Y,s0 A=ANY. Thus,

D=ANB=(ANY)NB=AN(YNB)=ANB

since B C Y. A symmetric argument shows that AN B = (.

Now, suppose A, BC X, AUB=Y, ANB=10,and AN B = (). Since A C A, we
have that AN B C AN B = (. Thus, by Exercise 6.4.2, it suffices to show A and B
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are closed subsets of Y with respect to the subspace topology on Y. Well,

A =Any by Theorem ?7
=AN(AUB) since AUB =Y
=(ANA)U(ANB)

— A since AC Aand ANB=10

Thus, A is closed as a subset of Y. A symmetric argument shows B is also closed
as a subset of Y. Hence, A and B form a separation of (Y, 7]y ) and thus (Y, 7|y) is

disconnected. O

Example 6.4.7. If we consider Y = [0,1) U (1, 2] as a subspace of R with the usual
topology, then Y is disconnected. Indeed, if we let A = [0,1) and B = (1, 2], then
Y = AUB while ANB=1[0,1]N(1,2] =0 and ANB =1[0,1)N[1,2] = 0.

Proposition 6.4.8. Let (X, 7) be a topological space and let A and B form a sepa-
ration of X. If (Y, T|y) is a connected subspace of (X, T), thenY C A orY C B.

Proof. Since A, B € 7, we have that ANY, BNY € 7|y. Further, (ANY)N(BNY) C
ANB = 0. So, ANY and BNY would form a separation of Y unless either ANY = ()
or BNY ={. Since X = AU B, we then have that either Y C Bor Y C A. O

Proposition 6.4.9. Let (X, 7) be a topological space and let Y; C X for all i € 1.
If (Yi, 7ly,) is connected, for all i € I, and Nic;Y; # 0, then Y = U;c;Y; is connected

with respect to Tly.

Proof. Let z € Nic;Y;. Suppose A and B form a separation of Y. Then z € A or
z € B. Without loss of generality, suppose z € A. Let i € I. Since (Y;,7|y,) is a
connected subspace of (Y, 7]y), by Proposition 6.4.8, we have that ¥; C AorY; C B.
Since z € A and z € Y, we must have that Y; C A. This holds for all i € I and thus,
Y = U;erY; € A which implies B = (0. This contradicts the fact that A and B forma

separation of Y. Thus, (Y, 7|y) is connected. O
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Exercise 6.4.10. Let (X, 7) be a topological space and suppose (A, 7|4) is con-
nected. If B is a set such that A C B C A, then (B, 7|p) is connected.

Note that a consequence of the last exercise is that the closure of a connected space
is also connected. It actually says a bit more. If we have a connected space and we
want to include some, but perhaps not all, of the limit points, then we can do so and

the space will stay connected.

The next theorem tells us when the finite product of topological spaces is connected.

Theorem 6.4.11. Let (X;,7;) be a topological space, for all i € Z,. Then X =
Hz’eZn X, with the product (or box) topology is connected if and only if (X;, ;) is

connected, for all i € 1.

Proof. Suppose X is connected. Let ¢ € Z,. Since m; : X — X, is continuous, by
Exercise 6.4.5, we have that m;(X) = X, is connected.

For the other direction, first suppose n = 2. Fix (a,b) € X; x X5 and consider
the subspaces {a} x X5 and X; x {b}. Since {a} x X, is homeomorphic to X, and
X, x {b} is homeomorphic to X, we have that {a} x X3 and X; x {b} are connected,
by Exercise 6.4.5.

Now, for y € X, we also have that {y} x X5 is connected, since it is homeomorphic to
Xs. Thus, the set Z, = ({y} x Xo) U (X3 x {b}) is connected since it is the union of
connected spaces which have the point (y, b) in common. Then, X; x Xy = Uyex, Z,
is connected since it is the union of connected spaces which all have the point (a, b)

in common.

A simple proof by induction, building off of the ideas above, will then give us the

result we want for an arbitrary n € Z. O

Of course, a natural question to ask at this point would be, "Do we have the above

theorem when we have an infinite product of topological spaces?" The answer is



40 CHAPTER 6. PROPERTIES OF TOPOLOGICAL SPACES

"

yes," if we equip the product space with the product topology. That is, X =
[Lic; Xi, where I is any index set and X has the product topology, is connected if
and only if X; is connected for all 7 € I. It is not the case, however, if X has the
box topology. It is not difficult to find examples in the literature where each X, is

connected yet the product space X, with the box topology, is not connected.

We now wish to prove that R, with the usual topology, is connected. Recall the fact

from an earlier section that every bounded subset of R has a least upper bound.

Theorem 6.4.12. The set R, with the usual topology, is connected.

Proof. First, we want to show I = [0, 1] is connected. To this end, suppose A and B
form a separation of I. Then 1 must be an element of one of them. Without loss of
generality, suppose 1 € A. Since A is open, there exists a set of the form (¢, 1] such
that (¢,1] € A. Thus, s = sup B # 1. Well, s € [0,1] so s € A or s € B. Since A
and B are open, whichever set contains s must also contain an open neighborhood of
s. But, any open neighborhood containing s would contain elements of B (otherwise
s would not be the least upper bound for B) and elements of A (otherwise s would
not be an upper bound for B at all). Either way, this is a contradiction. Thus, no

such separation exists and so I = [0, 1] is connected.

Now, for n € Z,, I, = [—n,n] is connected since it is homeomorphic to I. Then,
R = Upez, [—n,n] is connected since it is the union of connected spaces which all

have the point 0 in common. O

Since R is connected, we can now use Theorem 6.4.11 to see that R™ is connected,
for all n € Z,. Also, since C" is homeomorphic to R?", we also have that C" is
connected, for all n € Z,. Note that we also showed in the proof of the last theorem
that the interval [0, 1] is connected and, since [0, 1] is homeomorphic to [a, b] for any
a,b € R with a < b, we also have that [a,b] is connected. This is worth making a

corollary.
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Corollary 6.4.13. The interval [a,b], where a,b € R and a < b, is connected.

Our last goal for this section is to prove the Intermediate Value Theorem from our
calculus classes by proving a theorem which is slightly more general. The Interme-

diate Value Theorem will then be a corollary.

Theorem 6.4.14. Let (X, 1) be a connected topological space and let o be the usual
topology on R. Let f : (X, 7) = (R, 0) be continuous. If a,b € X and r is an element
of R strictly between f(a) and f(b), then there exists ¢ € X such that f(c) =r.

Proof. Let f: (X,7) — (R, o) be continuous, where (X, 7) is connected. Let a,b € X
and suppose r is strictly between f(a) and f(b). Consider the sets A = f(X) N
(—oo,7) and B = f(X) N (r,00). Clearly, A and B are disjoint. Also, one of the
sets contains f(a) while the other contains f(b) so neither set is empty. Also, both
A and B are open subsets of f(X) with the subspace topology. If there exists no
¢ € X such that f(c) = r, then A and B would form a separation of f(X) but we
know, from Exercise 6.4.5, that f(X) is connected. Thus, there must exist ¢ € X
such that f(c) =r. O

Corollary 6.4.15. (Intermediate Value Theorem) Let o be the usual topology
on R and let a < b. Suppose f : ([a,b],0|ny) = (R,0) is continuous and v € R is
strictly between f(a) and f(b). Then there exists ¢ € (a,b) such that f(c) =r.

Definition 6.4.16. Let X be a set. We say a function f : X — X has a fixed
point if there exists x € X such that f(z) = =.

There are many theorems which prove the existence of fixed points for certain types
of functions defined on various types of topological spaces (such theorems are called
fized-point theorems). Fixed-point theorems are used in many applications, including

image processing. The reader is asked to prove one fixed-point theorem below.
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Exercise 6.4.17. Let [ : [a,b] — [a,b] be continuous, where [a, b] is a closed interval
in R with the usual topology. Prove that f has a fixed point. Hint: Define a function
g(x) = f(x) — x on |a,b] and use The Intermediate Value Theorem.
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