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10 CHAPTER 5. SEQUENCES VS. NETS

Anyone who has taken a course in analysis understands the importance of sequences.

For example, they can be used to tell us when sets are open or closed, when sets are

compact, or when functions are continuous. In a sense, they are a wonderful tool

in the analyst's toolbox. In many regards, sequential convergence encapsilates the

topological structure of the real numbers. For example, we can say a set O is open

if and only if, for every x ∈ O, if (xn)
∞
n=1 is a sequence such that xn → x, then the

terms of the sequence must eventually be in O. We can say a set C is closed if and

only if, for every convergent sequence in C, the limit must also be in C. For function

continuity, a function f : X → Y is continuous if and only if, for every sequence

(xn)
∞
n=1 in X such that xn → x ∈ X, we have that f(xn) → f(x). Even though we

haven't discussed compact sets in a topological space yet, a subset D of R (or Rn)

is compact if every sequence in D has a subsequence which converges to an element

of D.

Since sequences are such a helpful tool when studying R (or even Rn) with the

usual topology, it would be nice to know if, and when, we can use them in general

topological spaces for the same kinds of tasks. In this chapter, we will see under

which conditions we can continue to use sequences in this manner. In the settings

where we cannot use sequences, we will have other mathematical objects, called nets,

which can be used to achieve similar tasks.

5.1 First Countable Spaces

De�nition 5.1.1. Let (X, τ) be a topological space. An open neighborhood base

for a point x ∈ X, is a collection Bx of open neighborhoods of x such that, given any

open neighborhood U of x, there exists B ∈ Bx such that x ∈ B ⊆ U .

Example 5.1.2. (i) If we take R with the usual topology, then B0 = {(− 1
n
, 1
n
)|n ∈

Z+} would be an open neighborhood base for 0.
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(ii) If (X, d) is a metric space, and x0 ∈ X, then Bx0 = {Bd(x0, r)| r > 0} is an

open neighborhood base for x0.

De�nition 5.1.3. A topological space (X, τ) is �rst countable if and only if every

x ∈ X has a countable open neighborhood base.

Example 5.1.4. (i) The set R with the usual topology is �rst countable since,

for every x ∈ R, the set Bx = {(x − 1
n
, x + 1

n
)|n ∈ Z+} is a countable open

neighbhorhood base for x.

(ii) More generally, every metric space is �rst countable. Let (X, d) be a metric

space and let x0 ∈ X. The set Bx0 = {Bd(x0, r)| r > 0 and r ∈ Q} is a

countable open neighborhood base for x0.

(iii) Consider R with the �nite complement topology τ . Then (R, τ) is not �rst

countable.

One of the most consequential properties of a �rst countable space is given in the

next theorem.

Theorem 5.1.5. If (X, τ) is a �rst countable topological space and A ⊆ X, then

x ∈ A if and only if there exists a sequence (xn)
∞
n=1 in A such that xn

τ−→ x.

Proof. Let x ∈ A. Since (X, τ) is �rst countable, there exists a countable open

neighborhood base Bx = {B1, B2, . . . } of x. Let U1 = B1 and Uk = ∩k
i=1Bk for all

k ≥ 2. Now we have that each Uk is an open neighborhood of x and Uk ⊇ Uk+1 for

all k ∈ Z+.

Claim: Uk ∩ A ̸= ∅, for all k ∈ Z+.

If there exists k ∈ Z+ such that Uk ∩ A = ∅, then U c
k is a closed set containing A

and, since x /∈ U c
k , we have that x /∈ A, which is a contradiction. Thus, Uk ∩ A ̸= ∅

for all k ∈ Z+.
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Let xk ∈ Uk ∩ A for all k ∈ Z+. Then we have de�ned a sequence (xn)
∞
n=1 in A. It

su�ces to prove xn → x. Let O be an open neighborhood of x. Since Bx is an open

neighborhood base for x, there exists BN ∈ Bx such that x ∈ BN ⊆ O. Let n ≥ N .

Then

xn ∈ Un ⊆ UN ⊆ BN ⊆ O.

Thus, xn → x.

For the other direction, suppose there exists a sequence (xn)
∞
n=1 in A such that

xn → x. If x ̸ inA, then x ∈ A
c
, which is open. Hence, A

c
is an open neighborhood

of x. Since xn → x, there exists N ∈ Z+ such that, for all n ≥ N , we have xn ∈ A
c
.

That is, xn /∈ A. This is a contradiction. Thus, we must have that x ∈ A.

The reason the above theorem is so consequential, in large part, is because it gives

us the next two theorems.

Theorem 5.1.6. Let (X, τ) be a �rst countable topological space.

(i) O ∈ τ if and only if, for every x ∈ O, if (xn)
∞
n=1 is a sequence in X such that

xn
τ−→ x, then there exists N ∈ Z+ such that, for all n ≥ N , we have xn ∈ O.

(ii) C is closed in X with respect to τ if and only if, for every sequence (xn)
∞
n=1 in

C, if xn
τ−→ x, then x ∈ C.

Proof. We will start by proving statement (i). The forward direction follows imme-

diately from the de�nition of a convergent sequence. For the backward direction, let

O be a subset of X and suppose that, for every x ∈ O, if (xn)
∞
n=1 is a sequence in

X such that xn → x, then there exists N ∈ Z+ such that, for all n ≥ N , we have

xn ∈ O.

Now, suppose O is not open. Then, by Exercise ??, we have that Oo ⊂ O. Let

x ∈ O \ Oo. Note then there does not exist an open set U such that x ∈ U ⊆ O,
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otherwise x ∈ Oo. Let Bx = {B1, B2, . . . } be a countable neighborhood base for x.

Without loss of generality, we can assume Bk ⊇ Bk+1 for all k ∈ Z+ by following the

same procedure that was used in the proof of Theorem 5.1.5.

Claim: For all n ∈ Z+, we have that Bn ∩ Oc ̸= ∅. If Bn ∩ Oc = ∅ for some

n ∈ Z+, then Bn ⊆ O and Bn is an open neighborhood of x. Thus, x ∈ Bn ⊆ Oo,

contradicting the fact that x /∈ Oo. So, we must have that Bn ∩ Oc ̸= ∅, for all

n ∈ Z+.

Let xn ∈ Bn ∩ Oc for all n ∈ Z+. Then xn → x. By our assumption, there exists

N ∈ Z+ such that, for all n ≥ N , we have xn ∈ O. But, xn ∈ Oc for all n ∈ Z+ so

we arrive at a contradiction. Thus, we must have that O = Oo and so O ∈ τ .

To prove the forward direction of statement (ii), suppose C is a closed set and let

(xn)
∞
n=1 be a sequence in C such that xn → x, for some x ∈ X. Then, we have that

x is a limit point for C and, since C is closed, by Theorem ??, we have that x ∈ C.

For the other direction, suppose that for every sequence (xn)
∞
n=1 in C, if xn → x,

then x ∈ C. We want to show C = C. Since we always have that C ⊆ C, it su�ces

to prove the reverse inclusion. Let x ∈ C. Then, by Theorem ??, either x ∈ C and

we are done or x is a limit point of C, so suppose x is a limit point of C. Since (X, τ)

is �rst countable, there is a countable open neighborhood base Bx = {B1, B2, . . . }
for x. Without loss of generality, suppose Bk ⊇ Bk+1 for all k ∈ Z+. Since x is a

limit point of C, we have that Bk ∩C ̸= ∅ for all k ∈ Z+ so pick xn ∈ Bn ∩C, for all

n ∈ Z+. Then (xn)
∞
n=1 is a sequence in C and xn → x. By our assumption, we have

that x ∈ C. Hence, C = C and so, by Theorem ??, we have that C is closed.

Exercise 5.1.7. Let X be a set and let τ1 and τ2 be topologies on X and suppose

(X, τ1) is �rst countable. Prove that τ2 ⊆ τ1 if and only if every sequence in X which

converges with respect to τ1 to some x ∈ X also converges to x with respect to τ2.

Theorem 5.1.8. Let (X, τ) and (Y, σ) be �rst countable topological spaces and let

f : (X, τ) → (Y, σ). Then f is continuous if and only if whenever (xn)
∞
n=1 is a
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sequence in X such that xn
τ−→ x, for some x ∈ X, we have that f(xn)

σ−→ f(x).

Proof. For the forward direction, suppose f is continuous. Let (xn)
∞
n=1 be a sequence

in X such that xn → x, for some x ∈ X. Let O be an open neighborhood of f(x).

Since f is continuous and f(x) ∈ O, we have that f−1(O) is an open neighborhood of

x. Since xn → x, there exists N ∈ Z+ such that, for all n ≥ N , we have xn ∈ f−1(O).

Then, for all n ≥ N , we have f(xn) ∈ O and so f(xn) → f(x).

For the other direction, suppose f is not continuous. Then, for some x0 ∈ X, the

function f is not continuous at x0. Thus, there exists an open neighborhood O of

f(x0) such that, for all open neighborhoods U of x0, we have that f(U) ̸⊆ O. Let

Bx0 = {B1, B2, . . . } be a countable neighborhood base for x0 and, without loss of

generality, suppose Bk ⊇ Bk+1 for all k ∈ Z+. Since Bk is an open neighborhood of

x0, we have that f(Bk) ̸⊆ O. Hence, there exists xk ∈ Bk such that f(xk) /∈ O, for

all k ∈ Z+. Then we have that xn → x0 but f(xn) does not converge to f(x0).

The next exercise will be used in the following example.

Exercise 5.1.9. Let (X, τ) be a topological space and let B be a base for τ . Let

A ⊆ X and let x ∈ X. Suppose that for every B ∈ B such that x ∈ B, we have that

B ∩ A ̸= ∅. Prove that x ∈ A. Hint: Suppose x /∈ A. Then there exists a closed set

C such that A ⊆ C and x /∈ C. Why? Now show there exists a basic open set B

such that x ∈ B ⊆ X \ A. Explain why this gives us a contradiction.

Example 5.1.10. Consider X = RR with the product topology τ . Let A be the set

of all f ∈ X such that

f(x) =

{
0 if x ∈ Ff

1 otherwise

for some �nite set Ff . If g : R → R where g(x) = 0 for all x ∈ R, then g /∈ A but

g ∈ A. Indeed, let O be a basic open neighborhood of g. Then there exists n ∈ Z+,
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x1, . . . , xn, y1, . . . , yn ∈ R, and ϵ1, . . . , ϵn ∈ (0,∞) such that

O = π−1
x1
(B(y1, ϵ1)) ∩ · · · ∩ π−1

xn
(B(yn, ϵn)).

Let Ff = {x1, . . . , xn} and de�ne f(x) = 0 if x ∈ Ff and f(x) = 1 if x /∈ Ff . Then

f ∈ A and f(xk) = g(xk) for all k = 1, . . . , n. Then, since g ∈ O we have that f ∈ O.

Hence, for any basic open neighborhood O of g, we can �nd f ∈ A ∩ O. Thus, by

the exercise above, g ∈ A.

However, there exists no sequence (fn)
∞
n=1 in A such that fn → g. Suppose so. Let

F = ∪∞
n=1Ffn . Then F is a countable union of �nite sets so F is a countable subset

of R. Hence, R \ F ̸= ∅. Let x ∈ R \ F . Note then that fn(x) = 1 for all n ∈ Z+.

Then B = π−1
x (B(0, 1

2
) is a basic open neighborhood of g but, for all n ∈ Z+, the

function fn /∈ B since |fn(x) − 0| = 1 > 1
2
. Therefore, the sequence (fn)

∞
n=1 cannot

converge to g. Hence, we have shown that while g ∈ A, there exists no sequence in

A which converges to it.

This example illustrates several things. First, it shows that Theorem 5.1.5 is not

true for a general topological space. It also shows, again from Theorem 5.1.5, that

RR with the product topology is not �rst countable. Further, this proves a statement

which was made in Chapter 2. Recall it was stated in Chapter 2 that there exists no

metric d on RR such that a sequence in RR would converge pointwise if and only if

it converged with respect to d. We now know this to be the case. For if there were

such a metric, it would have to generate the product topology on RR. However, this

would mean the product topology on RR is �rst countable, as all topologies induced

by metrics are �rst countable. Since RR is not �rst countable, there cannot exist

such a metric.

When a topology τ on a set X cannot be induced by a metric, then we say the

topological space (X, τ) is nonmetrizable. We now see that RR with the product

topology is nonmetrizable. The above argument also shows that any topological
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space which is not �rst countable is nonmetrizable. For example, we mentioned

earlier that R with the �nite complement topology is not �rst countable, so it too

is nonmetrizable. This is proof then that taking the step in abstraction from metric

spaces to general topological spaces was a necessary one.

5.2 Nets

As we have now seen, there are topological spaces where sequences are not a su�-

cient tool for studying their topological structure. Can we �nd a way to generalize

sequences to other mathematical objects more suited for these types of topological

spaces? Recall that one way to view a sequence x = (xn)
∞
n=1 in a set X is to view

x : Z+ → X, where x(k) = xk. One way to generalize a sequence is to then lessen the

requirement that the domain of x be Z+. Of course, letting the domain be any set

takes the generalization a bit too far. We would like to preserve certain properties

of Z+ for our new domain. Speci�cally, we would like to preserve certain properties

of the usual ordering we have on Z+, namely, re�exivity and transitivity. There is

also a third property of this ordering on Z+ that is fundamental to the concept and

usefulness of sequences: given k, n ∈ Z+, we can always �nd m ∈ Z+ such that

k ≤ m and n ≤ m. Replacing the set Z+ with a set which has a relation satisfying

these properties is how we arrive at the de�nition of nets.

De�nition 5.2.1. A set Λ is a directed set if there is a relation ≤ on Λ such that

(i) ≤ is re�exive,

(ii) ≤ is transitive, and

(iii) for all λ1, λ2 ∈ Λ, there exists λ3 ∈ Λ such that λ1 ≤ λ3 and λ2 ≤ λ3.

Example 5.2.2. (i) Obviously, the set Z+ is a directed set with its usual ordering.

Recall that it is our motivation for de�ning directed sets in the �rst place.
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(ii) The set R with the usual ordering is a directed set.

(iii) LetX be a nonempty set and, for any A,B ∈ P(X), let A ≤ B ⇔ A ⊆ B. Then

P(X) is a directed set with this ordering. The proof is a following exercise.

Exercise 5.2.3. Let X be a nonempty set and de�ne a relation ≤ on P(X) by

A ≤ B ⇔ A ⊆ B. Prove P(X) with the relation ≤ is a directed set.

De�nition 5.2.4. Let X be a nonempty set and let Λ be a directed set. A net in

the set X is a function x : Λ → X. Typically, we write x(λ) = xλ and refer to x as

the net (xλ)λ∈Λ.

Example 5.2.5. (i) If X is a nonempty set, then every sequence in X is also a

net in X. A sequence is a speci�c kind of net where we take the directed set Λ

to be Z+ with the usual ordering.

(ii) Let Λ = P(Z+) \ {∅} and de�ne a relation on Λ by A ≤ B if and only if

A ⊆ B. Then Λ with this relation is a directed set. Now, for each A ∈ Λ,

de�ne xA = minA. By the well-ordering principle, xA is well-de�ned. Then

(xA)A∈Λ is a net in Z+.

De�nition 5.2.6. Let (X, τ) be a topological space and let (xλ)λ∈Λ be a net in X.

We say the net (xλ)λ∈Λ converges to some x ∈ X if, for each open neighborhood

U of x there exists λ0 ∈ Λ such that, if λ ≥ λ0, then xλ ∈ U . In this case we write

xλ
λ−→ x.

Note that in the case when λ = Z+, the above de�nition is precisely the de�nition

for a convergent sequence.

Example 5.2.7. Let (X, τ) be a topological space and let x0 ∈ X. Let Λ be the

collection of all elements of τ which contain x0. De�ne a relation ≤ on Λ by U1 ≤ U2

if and only if U1 ⊇ U2. Then Λ with this relation is a directed set. Now, since each

element of Λ is nonempty, for each U ∈ Λ, pick xU ∈ U . Then (xU)U∈Λ is a net in

X. Further, xU
U−→ x0.
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Just as subsequences play an important role in analysis, subnets will also play an

important role in general topological spaces. Let's �rst recall the notion of a subse-

quence.

De�nition 5.2.8. Let X be a set and let (xn)
∞
n=1 be a sequence in X. Let n :

Z+ → Z+ be a strictly increasing function, where we denote n(k) = nk, and de�ne

yk = xnk
. Then we say the sequence (yk)

∞
k=1 is a subsequence of (xn)

∞
n=1. Note

that we usually do not relabel the subsequence and instead reference the subsequence

(xnk
)∞n=1 instead of (yk)

∞
k=1.

Example 5.2.9. Let (xn)
∞
n=1 = (1, 2, 3, 4, . . . ). Then a subsequence of (xn)

∞
n=1 would

be, for example, (xnk
)∞n=1 = (2, 4, 6, 8, . . . ). Formally, the map n : Z+ → Z+ would

be nk = n(k) = 2k. With this notation then, xn1 = 2, xn2 = 4, etc.

De�nition 5.2.10. (i) A subset Λ′ of a directed set Λ is called co�nal if for every

λ ∈ Λ there exists λ′ ∈ Λ′ such that λ ≤ λ′.

(ii) If (M,≤) and (Λ,≤) are two directed sets, then a function h : M → Λ is called

increasing if, for all µ1, µ2 ∈ M , if µ1 ≤ µ2, then h(µ1) ≤ h(µ2).

(iii) If (xλ)λ∈Λ is a net in a set X, then a net (yµ)µ∈M is called a subnet of (xλ)λ∈Λ

if there exists an increasing function λ from the directed set (M,≤) to the

directed set (Λ,≤) such that λ(M) is a co�nal subset of Λ, and yµ = xλ(µ).

Note that we typically write λµ instead of λ(µ). As with subsequences, we

typically do not relabel the subnet so we usually reference the subnet (xλµ)µ∈M

rather than (yµ)µ∈M .

Example 5.2.11. Let (X, τ) be a topological space with base B and let x0 ∈ X. As

in Example 5.2.7, let Λ be the collection of all elements of τ which contain x0. De�ne

a relation on ≤ on Λ by λ1 ≤ λ2 if and only if λ1 ⊇ λ2. Then Λ with this relation is a

directed set. Now, since each element of Λ is nonempty, for each λ ∈ Λ, pick xλ ∈ λ.

Then (xλ)λ∈Λ is a net in X. If we de�ne M to be the collection of all elements of Λ

which come from β then M is also a directed set with the same relation as Λ. Note
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that the map λ : M → Λ de�ned by λ(µ) = µ is increasing. The set λ(M) = M is

also co�nal in Λ since, for any λ0 ∈ Λ, since B is a base for τ , there exists µ ∈ M

such that µ ⊆ λ0. That is, µ ≥ λ0. Hence, (xλµ)µ∈M is a subnet of (xλ)λ∈Λ. Note

also that xλ
λ−→ x0 and xλµ

µ−→ x0.

Similar to how every subsequence of a convergent sequence is convergent, every

subnet of a convergent net converges, as the next proposition shows.

Proposition 5.2.12. If (xλ)λ∈Λ is a net in a topological space (X, τ) such that

xλ
λ−→ x, for some x ∈ X. Then every subnet (xλµ)µ∈M of (xλ)λ∈Λ converges to x.

Proof. Let (xλ)λ∈Λ be a net in X such that xλ
λ−→ x, for some x ∈ X. Let (xλµ)µ∈M

be a subnet of (xλµ)µ∈M and let O be an open neighborhood of x. Since xλ
x−→, there

exists λ0 ∈ Λ such that, for all λ ≥ λ0, we have that xλ ∈ O. Since λ(M) is co�nal in

Λ, there exists µ0 ∈ M such that λµ0 ≥ λ0. Further, since λ : M → Λ is increasing,

for all µ ≥ µ0 we have that λµ ≥ λµ0 ≥ λ0 and so xλµ ∈ O.

If you have studied analysis, then you have probably noticed that subsequences

show up, most often, in an abstract setting. We don't often have to deal with

speci�c subsequences. This is even more true for subnets. We almost exclusively

�nd ourselves dealing with generic subnets rather than speci�c ones.

De�nition 5.2.13. Let (X, τ) be a topological space. Let (xλ)λ∈Λ be a net in X and

let x ∈ X. We say x is a cluster point of (xλ)λ∈Λ if, for each open neighborhood U

of x and for each λ0 ∈ Λ, there exists λ ∈ Λ such that λ ≥ λ0 and xλ ∈ U .

Example 5.2.14. If (xn)
∞
n=1 is the sequence in R de�ned by xn = (−1)n, then 1 and

−1 are cluster points for the sequence.

Theorem 5.2.15. Let (X, τ) be a topological space and let (xλ)λ∈Λ be a net in X.

A point x ∈ X is a cluster point for (xλ)λ∈Λ if and only if there exists a subnet

(xλµ)µ∈M of (xλ)λ∈Λ such that xλµ

µ−→ x.
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Proof. Let (xλ)λ∈Λ be a net in X.

For the forward direction, suppose x is a cluster point for (xλ)λ∈Λ. Let

M = {(λ, U)|λ ∈ Λ , U is an open nbd of x such that xλ ∈ U}.

De�ne a relation ≤ on M by (λ1, U1) ≤ (λ2, U2) if and only if λ1 ≤ λ2 and U2 ⊆ U1.

Claim: The pair (M,≤) is a directed set.

Obviously, (M,≤) is re�exive and transitive. Let (λ1, U1), (λ2, U2) ∈ M . Since Λ is

a directed set, there exists λ0 ∈ Λ such that λ1 ≤ λ0 and λ2 ≤ λ0. Since U1 and U2

are open neighborhoods of x, we have that U3 = U1 ∩ U2 is an open neighborhood

of x. Since x is a cluster point, there exists λ3 ≥ λ0 such that xλ3 ∈ U3. Hence,

(λ3, U3) ∈ M and (λ1, U1) ≤ (λ3, U3) and (λ2, U2) ≤ (λ3, U3).

De�ne h : M → Λ by h(λ, U) = λ. The function h is obviously increasing and co�nal.

Let U0 be an open neighborhood of x. Since x is a cluster point, pick λ0 ∈ Λ such that

xλ0 ∈ U0. Then (λ0, U0) ∈ M and, if (λ, U) ≥ (λ0, U0), then x(λ,U) = xλ ∈ U ⊆ U0.

Hence, x(λ,U) → x.

For the other direction, suppose (xλµ)µ∈M is a subnet of (xλ)λ∈Λ and xλµ → x. Let

U be an open neighborhood of x. Let λ0 ∈ Λ. Since xλµ → x, there exists µ0 ∈ M

such that, for all µ ≥ µ0, we have xλµ ∈ U . Pick λ1 ∈ Λ such that λ1 ≥ λ0 and

λ1 ≥ λµ0 . Then pick λµ1 ≥ λ1 and we have that xλµ1
∈ U . Hence, x is a cluster

point for (xλ)λ∈Λ.

Corollary 5.2.16. Let (X, τ) be a topological space. Let (xλ)λ∈Λ be a net in X and

let (xλµ)µ∈M be a subnet of (xλ)λ∈Λ. If x is a cluster point of (xλµ)µ∈M , then x is a

cluster point of (xλ)λ∈Λ.

Proof. If x is a cluster point of (xλµ)µ∈M , by Theorem 5.2.15, there exists a subnet of

(xλµ)µ∈M which converges to x. But a subnet of (xλµ)µ∈M is also a subnet of (xλ)λ∈Λ
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so again, by Theorem 5.2.15, we have that x is a cluster point of (xλ)λ∈Λ.

The next theorem shows that we get a version Theorem 5.1.5 for a general topological

space if we replace sequences with nets.

Theorem 5.2.17. Let (X, τ) be a topological space and let A ⊆ X. Then a point

x ∈ A if and only if there exists a net (xλ)λ∈Λ in A such that xλ
τ−→ x.

Proof. For the forward direction, let x ∈ A. Then, for all open neighborhoods U of

x, we have that U ∩ A ̸= ∅. Let λ be the set of all open neighborhoods of x where

we de�ne the relation ≤ by U1 ≤ U2 if and only if U1 ⊇ U2. Then, for all U ∈ Λ,

pick xU ∈ U ∩ A. Then (xU)U∈Λ is a net in A and xU → x.

For the other direction, let (xλ)λ∈Λ be a net in A such that xλ → x. Let O be an

open neighborhood of x. Then there exists λ0 ∈ Λ such that, for all λ ≥ λ0, we have

that xλ ∈ O. Thus, xλ ∈ O ∩ A and so O ∩ A ̸= ∅. Hence, x is a limit point of A

and so x ∈ A.

The next theorem shows that we get a version of Theorem 5.1.6 for a general topo-

logical space if we replace sequences with nets.

Theorem 5.2.18. Let (X, τ) be a �rst countable topological space.

(i) O ∈ τ if and only if, for every x ∈ O, if (xλ)λ∈Λ is a net in X such that xλ
τ−→ x,

then there exists λ0 ∈ Λ such that, for all λ ≥ λ0, we have xλ ∈ O.

(ii) C is closed in X with respect to τ if and only if, for every net (xλ)λ∈Λ in C, if

xλ
τ−→ x, then x ∈ C.

Proof. need to �gure this one out still-can remove it since it isn't used later as long

as the next exercise is removed
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A useful consequence of the above theorem is given in the next exercise.

Exercise 5.2.19. Let X be a set and let τ1 and τ2 be topologies on X. Prove

τ2 ⊆ τ1 if and only if every net (xλ)λ∈Λ in X which converges with respect to τ1 to

some x ∈ X also converges to x with respect to τ2.

We also obtain a result similar to Theorem 5.1.8 for general topological spaces if we

replace sequences with nets.

Theorem 5.2.20. Let (X, τ) and (Y, σ) be topological spaces and let f : (X, τ) →
(Y, σ). Then f is continuous at x0 if and only if, whenever xλ

τ−→ x0 in X, we have

that f(xλ)
σ−→ f(x0) in Y .

Proof. Suppose f is continuous at x0. Let (xλ)λ∈Λ be a net in X such that xλ → x0.

Let U be an open neighborhood of f(x0). Then f−1(U) is an open neighborhood

of x0. Since xλ → x0, there exists λ0 ∈ Λ such that, for all λ ≥ λ0, we have that

xλ ∈ f−1(U). Then, for all λ ≥ λ0, we have that f(xλ) ∈ U and so f(xλ) → f(x0).

For the other direction, suppose f is not continuous at x0. Then, for some open

neighborhood V of f(x0), we have that f(U) ̸⊆ V , for all open neighborhoods U of

x0. Let Λ be the set of all open neighborhoods of x0 and de�ne ≤ on Λ by U1 ≤ U2 if

and only if U1 ⊇ U2. Since f(U) ̸⊆ V for all U ∈ Λ, let xU ∈ U such that f(xU) /∈ V ,

for all U ∈ Λ. Then (xU)U∈Λ is a net in X and xU → x0 but f(xU) does not converge

to f(x0) since V is an open neighborhood of x0 but f(xU) /∈ V , for all U ∈ Λ.

An important consequence of the above theorem is the following theorem.

Theorem 5.2.21. Let X be a set and let (Xi, τi) be topological spaces for all i ∈ I.

For each i ∈ I, let fi : X → Xi and set F = {fi| i ∈ I}. Let τ be the weak topology

generated on X by F . A net (xλ)λ∈Λ converges to x ∈ X if and only if fi(xλ)
λ−→ fi(x)

for all i ∈ I.
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Proof. Let i ∈ I and suppose xλ
λ−→ x. Since τ is the weakest topology on X which

makes all the elements of F continuous, fi : (X, τ) → (Xi, τi) is continuous. Hence,

by Theorem 5.2.20, we have that fi(xλ)
τ−→ fi(x).

For the other direction, suppose fi(xλ)
τ−→ fi(x) for all i ∈ I. Let B be a basic open

neighborhood of x in X. Then there exists n ∈ Z+, i1, . . . , in ∈ I and Oik ∈ τik , for

all k = 1, . . . , n, such that

B = f−1
i1

(Oi1) ∩ f−1
i2

(Oi2) ∩ · · · ∩ f−1
in

(Oin).

Since B is an open neighborhood of x, we have that x ∈ f−1
ik

(Oik) for all k = 1, . . . , n,

and so fik(x) ∈ Oik , for all k = 1, . . . n. By our assumption, for each k = 1, . . . , n,

there exists λk such that, if λ ≥ λk, then fik(xλ) ∈ Oik . Pick λ0 to be greater than

or equal to all λ1, . . . , λn. Then, for λ ≥ λ0, we have that fik(xλ) ∈ Oik for all

i = 1, . . . n and so xλ ∈ B.

Recall that the product topology on a product space can be viewed as the weak

topology generated by the projection maps. Hence, the above theorem immediately

implies the following corollary.

Corollary 5.2.22. Let (Xi, τi) be a topological space for all i ∈ I. Let X =
∏

i∈I Xi

with the product topology τ and let (xλ)λ∈Λ be a net in X. Then (xλ)λ∈Λ converges

to x ∈ X if and only if πi(xλ)
τ−→ πi(x) for all i ∈ I.

As we have already discussed, often times, the collection of topological spaces (Xi, τi)

for all i ∈ I, are all the same, say (Y, σ). The product space X =
∏

i∈I Xi then

becomes Y I , or rather, the set of functions f : I → Y . In this setting, the above

corollary tells us that a net (xλ)λ∈Λ in Y I converges to x ∈ Y I if and only if xλ(i)
σ−→

x(i) for all i ∈ I since πi(xλ) = xλ(i) for all i ∈ I.

To be even more precise, we have that if RR is equipped with the product topology,

then a net (fλ)λ∈Λ converges to some f ∈ RR if and only if fλ(x) → f(x) for all
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x ∈ R. Hence, nets in RR converge precisely when we have pointwise convergence.

Furthermore, since we have already seen that RR is not �rst countable, to use the-

orems 5.2.17 and 5.2.20 for RR, we have to investigate the pointwise convergence of

nets. For example, suppose we have a set A in RR and we want to show that f ∈ A.

It su�ces to show that there exists a net (fλ)λ∈Λ in A such that fλ(x) → f(x) for

all x ∈ R. The next example illustrates a standard method for proving a function

T : RR → RR is continuous when RR has the product topology.

Example 5.2.23. Fix t ∈ R and consider the function T : RR → RR de�ned by

T (f)(x) = f(x + t) for all x ∈ R. Assume RR has the product topology in the

domain and codomain. To prove that T is continuous, by Theorem 5.2.20 and the

discussion above, it is enough to show that if (fλ)λ∈λ is a net in RR and there exists

f ∈ RR such that fλ(x) → f(x) for all x ∈ R, then we have that T (fλ)(x) → T (f)(x)

for all x ∈ R. In this case, checking that T (fλ)(x) → T (f)(x) is fairly trivial since it

is equivalent to checking that fλ(x+ t) → f(x+ t) which we know is the case since

t+ x ∈ R and we are assuming that fλ(y) → f(y) for all y ∈ R (just take y = x+ t).

Thus, the function T is continuous.

The next two exercises are both standard homework problems in an analysis class

for sequences in R (or Rn). Here, we are able to prove them in more generality for

nets in general topological spaces.

Exercise 5.2.24. Let (X, τ) be a topological space and suppose (xλ)λ∈Λ is a net in

X such that xλ
λ−→ x, for some x ∈ X. Prove every subnet of (xλ)λ∈Λ also converges

to x.

Exercise 5.2.25. Let (X, τ) be a topological space and suppose (xλ)λ∈Λ is a net in

X. Let x ∈ X. Prove that if every subnet of (xλ)λ∈Λ has a subnet which converges

to x, then xλ
λ−→ x. Hint: Suppose not. That is, suppose there exists an open

neighborhood O of x such that, for all λ0 ∈ Λ, there exists λ ≥ λ0 such that xλ /∈ O.

De�ne M = {λ ∈ Λ|xλ /∈ O}. For µ ∈ M , de�ne λµ = µ. Thus, (xλµ)µ∈M is a

subnet of (xλ)λ∈Λ. Now �nd a contradiction.
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