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10 CHAPTER 5. SEQUENCES VS. NETS

Anyone who has taken a course in analysis understands the importance of sequences.
For example, they can be used to tell us when sets are open or closed, when sets are
compact, or when functions are continuous. In a sense, they are a wonderful tool
in the analyst’s toolbox. In many regards, sequential convergence encapsilates the

topological structure of the real numbers. For example, we can say a set O is open

[eS)
n=1

if and only if, for every z € O, if (z,)%, is a sequence such that =, — x, then the
terms of the sequence must eventually be in O. We can say a set C' is closed if and
only if, for every convergent sequence in C, the limit must also be in C'. For function
continuity, a function f : X — Y is continuous if and only if, for every sequence
()22, in X such that z,, - 2 € X, we have that f(x,) — f(z). Even though we
haven’t discussed compact sets in a topological space yet, a subset D of R (or R")

is compact if every sequence in D has a subsequence which converges to an element
of D.

Since sequences are such a helpful tool when studying R (or even R") with the
usual topology, it would be nice to know if, and when, we can use them in general
topological spaces for the same kinds of tasks. In this chapter, we will see under
which conditions we can continue to use sequences in this manner. In the settings
where we cannot use sequences, we will have other mathematical objects, called nets,

which can be used to achieve similar tasks.

5.1 First Countable Spaces

Definition 5.1.1. Let (X, 7) be a topological space. An open neighborhood base
for a point x € X, is a collection B, of open neighborhoods of = such that, given any
open neighborhood U of x, there exists B € B, such that x € B C U.

Example 5.1.2. (i) If we take R with the usual topology, then By = {(—2,1)[n €
Z. } would be an open neighborhood base for 0.
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(ii) If (X,d) is a metric space, and xy € X, then B,, = {Ba(x,7)|r > 0} is an

open neighborhood base for xg.

Definition 5.1.3. A topological space (X, 7) is first countable if and only if every

x € X has a countable open neighborhood base.

Example 5.1.4. (i) The set R with the usual topology is first countable since,
for every z € R, the set B, = {(z — L,z + 1)|n € Z,} is a countable open
neighbhorhood base for x.

(ii) More generally, every metric space is first countable. Let (X,d) be a metric
space and let o € X. The set B,, = {Bi(zo,r)|r > 0Oandr € Q} is a

countable open neighborhood base for z.

(iii) Consider R with the finite complement topology 7. Then (R, 7) is not first

countable.

One of the most consequential properties of a first countable space is given in the

next theorem.

Theorem 5.1.5. If (X, 7) is a first countable topological space and A C X, then

x € A if and only if there exists a sequence (x,)°, in A such that x,, — x.

Proof. Let x € A. Since (X,7) is first countable, there exists a countable open
neighborhood base B, = {By, By,...} of z. Let U = By and U, = N¥_, By, for all
k > 2. Now we have that each Uy is an open neighborhood of x and Uy O Uy, for
all k € Z,.

Claim: U, NA# (), forall k € Z,.

If there exists k € Z, such that U, N A = (), then U is a closed set containing A
and, since z ¢ Uf, we have that ¢ A, which is a contradiction. Thus, U, N A # 0)
forall k € Z,.
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Let x € U, N A for all k € Z,.. Then we have defined a sequence (z,)°, in A. It
suffices to prove x, — x. Let O be an open neighborhood of x. Since B, is an open
neighborhood base for x, there exists By € B, such that x € By C O. Let n > N.
Then

z, €U, CUy C By CO.

Thus, z,, — .

For the other direction, suppose there exists a sequence (z,)7°; in A such that
z, — x. If © inA, then z € A°, which is open. Hence, A is an open neighborhood
of z. Since z,, — x, there exists N € Z. such that, for all n > N, we have z,, € A°.
That is, z,, ¢ A. This is a contradiction. Thus, we must have that z € A. O

The reason the above theorem is so consequential, in large part, is because it gives

us the next two theorems.

Theorem 5.1.6. Let (X, 7) be a first countable topological space.

(i) O € 7 if and only if, for every x € O, if (x,)32, is a sequence in X such that
T, — x, then there exists N € Z, such that, for alln > N, we have x, € O.

(ii) C is closed in X with respect to T if and only if, for every sequence (x,)5 in

C, if t, = x, then x € C.

Proof. We will start by proving statement (i). The forward direction follows imme-
diately from the definition of a convergent sequence. For the backward direction, let
O be a subset of X and suppose that, for every z € O, if (x,)32, is a sequence in
X such that z,, — x, then there exists N € Z, such that, for all n > N, we have
x, € 0.

Now, suppose O is not open. Then, by Exercise 77, we have that O° C O. Let
x € O\ O° Note then there does not exist an open set U such that x € U C O,



5.1. FIRST COUNTABLE SPACES 13

otherwise x € O°. Let B, = {B1, Bs, ...} be a countable neighborhood base for z.
Without loss of generality, we can assume By O By, for all k € Z, by following the

same procedure that was used in the proof of Theorem 5.1.5.

Claim: For all n € Z,, we have that B, N O¢ # (. If B, N O° = () for some
n € Z,, then B, C O and B, is an open neighborhood of x. Thus, x € B, C O°,
contradicting the fact that x ¢ O°. So, we must have that B, N O° # (), for all
nes,..

Let x, € B, N O for all n € Z,. Then x, — x. By our assumption, there exists
N € Z, such that, for all n > N, we have x,, € O. But, x, € O° for all n € Z, so

we arrive at a contradiction. Thus, we must have that O = O° and so O € 7.

To prove the forward direction of statement (ii), suppose C' is a closed set and let
(2,)22, be a sequence in C such that z,, — z, for some x € X. Then, we have that

x is a limit point for C' and, since C'is closed, by Theorem ?7?, we have that x € C.

For the other direction, suppose that for every sequence (z,)°, in C, if z,, — z,
then x € C. We want to show C' = C. Since we always have that C' C C, it suffices
to prove the reverse inclusion. Let 2 € C. Then, by Theorem ??, either z € C' and
we are done or x is a limit point of C, so suppose z is a limit point of C. Since (X, 7)
is first countable, there is a countable open neighborhood base B, = {By, Bs, ...}
for x. Without loss of generality, suppose By 2 By, for all k € Z,. Since z is a
limit point of C', we have that B,NC # () for all k € Z, so pick z,, € B, NC, for all
n € Z,. Then (z,):2, is a sequence in C' and z,, — z. By our assumption, we have
that « € C. Hence, C = C and so, by Theorem ??, we have that C is closed. O

Exercise 5.1.7. Let X be a set and let 7, and 75 be topologies on X and suppose
(X, 7) is first countable. Prove that 7o C 7 if and only if every sequence in X which

converges with respect to 7, to some x € X also converges to x with respect to .

Theorem 5.1.8. Let (X, 7) and (Y,0) be first countable topological spaces and let

f(X,7) = (Y,0). Then f is continuous if and only if whenever (x,)5, is a
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sequence in X such that x,, — x, for some x € X, we have that f(z,) = f(x).

Proof. For the forward direction, suppose f is continuous. Let (x,,)22; be a sequence
in X such that z,, — x, for some z € X. Let O be an open neighborhood of f(z).
Since f is continuous and f(z) € O, we have that f~'(O) is an open neighborhood of
x. Since z,, — x, there exists N € Z, such that, for all n > N, we have z,, € f~1(O).
Then, for all n > N, we have f(z,) € O and so f(x,) — f(z).

For the other direction, suppose f is not continuous. Then, for some zy € X, the
function f is not continuous at xy. Thus, there exists an open neighborhood O of
f(zo) such that, for all open neighborhoods U of zy, we have that f(U) € O. Let
B,, = {Bi, Ba,...} be a countable neighborhood base for z, and, without loss of
generality, suppose By O By for all k € Z,. Since By, is an open neighborhood of
xg, we have that f(By) € O. Hence, there exists x; € By such that f(zy) ¢ O, for
all k € Z,. Then we have that x,, — o but f(z,) does not converge to f(zo). O

The next exercise will be used in the following example.

Exercise 5.1.9. Let (X, 7) be a topological space and let B be a base for 7. Let
A C X and let z € X. Suppose that for every B € BB such that x € B, we have that
BN A#0. Prove that € A. Hint: Suppose v ¢ A. Then there exists a closed set
C such that A C C and x ¢ C. Why? Now show there exists a basic open set B
such that x € B C X \ A. Ezplain why this gives us a contradiction.

Example 5.1.10. Consider X = R¥ with the product topology 7. Let A be the set
of all f € X such that

fz) =

0 ifzely
1 otherwise

for some finite set Fy. If g : R — R where g(z) = 0 for all € R, then g ¢ A but
g € A. Indeed, let O be a basic open neighborhood of g. Then there exists n € Z,,
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Tl oy Ty Y1y Yn € Ry and €, ..., €, € (0,00) such that

0 = (Blyr.e)) N+ Nyt (Blyns€2).

Let Fy = {x1,...,2,} and define f(z) =0if x € Fy and f(z) = 1if v ¢ Fy. Then
f e Aand f(x) = g(xy) for all k = 1,...,n. Then, since g € O we have that f € O.
Hence, for any basic open neighborhood O of g, we can find f € AN O. Thus, by

the exercise above, g € A.

However, there exists no sequence (f,)>2, in A such that f,, — ¢g. Suppose so. Let
F = U2 Fy,. Then I is a countable union of finite sets so [ is a countable subset
of R. Hence, R\ F # (). Let x € R\ F. Note then that f,(x) =1 for all n € Z,.
Then B = 7' (B(0, %) is a basic open neighborhood of ¢ but, for all n € Z,, the
function f, ¢ B since |f,(x) — 0] =1 > 3. Therefore, the sequence (f,)52; cannot
converge to g. Hence, we have shown that while g € A, there exists no sequence in

A which converges to it.

This example illustrates several things. First, it shows that Theorem 5.1.5 is not
true for a general topological space. It also shows, again from Theorem 5.1.5, that
R® with the product topology is not first countable. Further, this proves a statement
which was made in Chapter 2. Recall it was stated in Chapter 2 that there exists no
metric d on R® such that a sequence in R® would converge pointwise if and only if
it converged with respect to d. We now know this to be the case. For if there were
such a metric, it would have to generate the product topology on R¥. However, this
would mean the product topology on RR is first countable, as all topologies induced
by metrics are first countable. Since R¥ is not first countable, there cannot exist

such a metric.

When a topology 7 on a set X cannot be induced by a metric, then we say the
topological space (X, 7) is nonmetrizable. We now see that R¥® with the product

topology is nonmetrizable. The above argument also shows that any topological
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space which is not first countable is nonmetrizable. For example, we mentioned
earlier that R with the finite complement topology is not first countable, so it too
is nonmetrizable. This is proof then that taking the step in abstraction from metric

spaces to general topological spaces was a necessary one.

5.2 Nets

As we have now seen, there are topological spaces where sequences are not a suffi-
cient tool for studying their topological structure. Can we find a way to generalize
sequences to other mathematical objects more suited for these types of topological
spaces? Recall that one way to view a sequence x = (x,)2%, in a set X is to view
x:Zy — X, where (k) = z5. One way to generalize a sequence is to then lessen the
requirement that the domain of x be Z,. Of course, letting the domain be any set
takes the generalization a bit too far. We would like to preserve certain properties
of Z, for our new domain. Specifically, we would like to preserve certain properties
of the usual ordering we have on Z,, namely, reflexivity and transitivity. There is
also a third property of this ordering on Z, that is fundamental to the concept and
usefulness of sequences: given k,n € Z,, we can always find m € Z, such that
k < m and n < m. Replacing the set Z, with a set which has a relation satisfying

these properties is how we arrive at the definition of nets.

Definition 5.2.1. A set A is a directed set if there is a relation < on A such that

(i) < is reflexive,
(ii) < is transitive, and
(iii) for all Ay, Ay € A, there exists A3 € A such that A\; < A3 and Ay < As.

Example 5.2.2. (i) Obviously, the set Z is a directed set with its usual ordering.

Recall that it is our motivation for defining directed sets in the first place.
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(ii) The set R with the usual ordering is a directed set.

(iii) Let X be a nonempty set and, for any A, B € P(X),let A< B < A C B. Then

P(X) is a directed set with this ordering. The proof is a following exercise.

Exercise 5.2.3. Let X be a nonempty set and define a relation < on P(X) by
A< B<& AC B. Prove P(X) with the relation < is a directed set.

Definition 5.2.4. Let X be a nonempty set and let A be a directed set. A net in
the set X is a function z : A — X. Typically, we write z(\) = z, and refer to x as

the net (ZL’)\))\EA.

Example 5.2.5. (i) If X is a nonempty set, then every sequence in X is also a
net in X. A sequence is a specific kind of net where we take the directed set A

to be Z, with the usual ordering.

(i) Let A = P(Zy) \ {0} and define a relation on A by A < B if and only if
A C B. Then A with this relation is a directed set. Now, for each A € A,
define x4 = min A. By the well-ordering principle, x4 is well-defined. Then

(IA)AGA is a net in Z+.

Definition 5.2.6. Let (X, 7) be a topological space and let (z))xea be a net in X.
We say the net (x)),ea converges to some x € X if, for each open neighborhood
U of x there exists \g € A such that, if A > A\g, then x, € U. In this case we write

A
Ty — T.

Note that in the case when A\ = Z,, the above definition is precisely the definition

for a convergent sequence.

Example 5.2.7. Let (X, 7) be a topological space and let 7o € X. Let A be the
collection of all elements of 7 which contain zy. Define a relation < on A by U; < U,
if and only if U; D U,. Then A with this relation is a directed set. Now, since each
element of A is nonempty, for each U € A, pick zy € U. Then (xy)yen is a net in

X. Further, zy R Xo.
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Just as subsequences play an important role in analysis, subnets will also play an
important role in general topological spaces. Let’s first recall the notion of a subse-

quence.

Definition 5.2.8. Let X be a set and let (z,)2%, be a sequence in X. Let n :
Z. — 7, be a strictly increasing function, where we denote n(k) = ny, and define
Yr = Zn,. Then we say the sequence (yx)52, is a subsequence of (z,)32,. Note

that we usually do not relabel the subsequence and instead reference the subsequence

(20, )52, instead of (y)2,-

Example 5.2.9. Let (2,)0°, = (1,2,3,4,...). Then a subsequence of (z,,)5°, would
be, for example, (z,, )52, = (2,4,6,8,...). Formally, the map n : Z, — Z, would
be n, = n(k) = 2k. With this notation then, z,, = 2, x,, = 4, etc.

Definition 5.2.10. (i) A subset A’ of a directed set A is called cofinal if for every
A € A there exists X € A’ such that A < \.

(ii) If (M, <) and (A, <) are two directed sets, then a function h : M — A is called
increasing if, for all uy, ps € M, if py < po, then h(py) < h(us).

(ili) If (x))aen is a net in a set X, then a net (y,),ecn is called a subnet of (z))xea
if there exists an increasing function A from the directed set (M, <) to the
directed set (A, <) such that A(M) is a cofinal subset of A, and y, = x.
Note that we typically write A, instead of A(p). As with subsequences, we
typically do not relabel the subnet so we usually reference the subnet (z,),cn

rather than (y,),cum-

Example 5.2.11. Let (X, 7) be a topological space with base B and let 2y € X. As
in Example 5.2.7, let A be the collection of all elements of 7 which contain zy. Define
a relation on < on A by A; < As if and only if Ay D X\y. Then A with this relation is a
directed set. Now, since each element of A is nonempty, for each A\ € A, pick z) € A.
Then (z))xea is a net in X. If we define M to be the collection of all elements of A

which come from [ then M is also a directed set with the same relation as A. Note
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that the map A : M — A defined by A(u) = p is increasing. The set A(M) = M is
also cofinal in A since, for any A\g € A, since B is a base for 7, there exists u € M
such that 4 € Ag. That is, 1 > Ag. Hence, (x),)uerr is a subnet of (z3)xea. Note

A
also that zy — x¢ and ,, £ 2.

Similar to how every subsequence of a convergent sequence is convergent, every

subnet of a convergent net converges, as the next proposition shows.

Proposition 5.2.12. If (x)\)xea s a net in a topological space (X, T) such that

A
x\ = x, for some x € X. Then every subnet (xy,)uerm of (Tx)ren converges to x.

Proof. Let (xy)aea be a net in X such that A z, for some z € X. Let (z,)uem
be a subnet of (xx\u)ueM and let O be an open neighborhood of x. Since z), 25, there
exists A\g € A such that, for all A\ > Ao, we have that x) € O. Since A(M) is cofinal in
A, there exists pip € M such that A\, > X\¢. Further, since A : M — A is increasing,
for all 1 > pip we have that A\, > A,) > Ao and so z,, € O. O

If you have studied analysis, then you have probably noticed that subsequences
show up, most often, in an abstract setting. We don’t often have to deal with
specific subsequences. This is even more true for subnets. We almost exclusively

find ourselves dealing with generic subnets rather than specific ones.

Definition 5.2.13. Let (X, 7) be a topological space. Let (x))xea be a net in X and
let x € X. We say x is a cluster point of (x)),ca if, for each open neighborhood U
of z and for each \g € A, there exists A € A such that A > A\g and z, € U.

Example 5.2.14. If (x,)%% is the sequence in R defined by z,, = (—1)", then 1 and

—1 are cluster points for the sequence.

Theorem 5.2.15. Let (X, 7) be a topological space and let (z))rep be a net in X.
A point x € X is a cluster point for (x)\)aea if and only if there exists a subnet

(wx, Juers of (Ta)ren such that xy, LN
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Proof. Let (x\)xea be a net in X.

For the forward direction, suppose x is a cluster point for (x))xea. Let
M ={(\,U)|XA € A, U is an open nbd of = such that =) € U}.

Define a relation < on M by (A, U;) < (A2, Us) if and only if A; < Ay and Us C Us.
Claim: The pair (M, <) is a directed set.

Obviously, (M, <) is reflexive and transitive. Let (A, U;), (A2, Us) € M. Since A is
a directed set, there exists \g € A such that \; < A\g and Ay < Ag. Since U; and U,
are open neighborhoods of x, we have that Us; = U; N U, is an open neighborhood

of . Since z is a cluster point, there exists A3 > \¢ such that z,, € Us. Hence,
()\3,U3) € M and ()\1, Ul) < ()\3, Ug) and ()\2, Uz) < ()\3, Ug)

Define h : M — A by h(\,U) = A\. The function h is obviously increasing and cofinal.
Let Uy be an open neighborhood of z. Since z is a cluster point, pick A\g € A such that
xy, € Up. Then (Ao, Upy) € M and, if (\,U) > (Ao, Up), then z )y = z) € U C U.

Hence, x(\ vy — .

For the other direction, suppose (xx,)uenr is a subnet of (x))xea and x,, — z. Let
U be an open neighborhood of z. Let A\g € A. Since x), — x, there exists pg € M
such that, for all y > o, we have x,, € U. Pick A € A such that \; > A\ and
A1 > Ay- Then pick A\, > Ay and we have that Ty, € U. Hence, x is a cluster

point for (z))xea. O

Corollary 5.2.16. Let (X, 7) be a topological space. Let (x))ren be a net in X and
let (xx,)uem be a subnet of (xx\)rea. If © is a cluster point of (xx,)uem, then x is a

cluster point of (x))ren-

Proof. If x is a cluster point of (2, )uenr, by Theorem 5.2.15, there exists a subnet of

(wx,)uenr which converges to x. But a subnet of (z,,),ecn is also a subnet of (z3)aea
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so again, by Theorem 5.2.15, we have that = is a cluster point of (z))xea. H

The next theorem shows that we get a version Theorem 5.1.5 for a general topological

space if we replace sequences with nets.

Theorem 5.2.17. Let (X, 1) be a topological space and let A C X. Then a point

x € A if and only if there exists a net (x))xen i A such that Ty = x.

Proof. For the forward direction, let € A. Then, for all open neighborhoods U of
x, we have that U N A # (). Let X be the set of all open neighborhoods of 2 where
we define the relation < by U; < U, if and only if Uy O U,. Then, for all U € A,
pick xyy € UN A. Then (xy)yen is a net in A and 2y — z.

For the other direction, let (z))rea be a net in A such that zy — x. Let O be an
open neighborhood of x. Then there exists A\g € A such that, for all A > Ay, we have
that zy € O. Thus, zy € ON A and so ON A # (. Hence, x is a limit point of A
and so z € A. O

The next theorem shows that we get a version of Theorem 5.1.6 for a general topo-

logical space if we replace sequences with nets.
Theorem 5.2.18. Let (X, 7) be a first countable topological space.
(i) O € 7 if and only if, for every x € O, if (x))ren 5 a net in X such that x5 = x,
then there exists \g € A such that, for all X > \g, we have z, € O.
(i1) C is closed in X with respect to 7 if and only if, for every net (x))rea in C, if

T\ = x, then x € C.

Proof. need to figure this one out still-can remowve it since it isn’t used later as long

as the next exercise is removed O
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A useful consequence of the above theorem is given in the next exercise.

Exercise 5.2.19. Let X be a set and let 73 and 7 be topologies on X. Prove
Ty C 7 if and only if every net (z))xea in X which converges with respect to 71 to

some x € X also converges to x with respect to 7.

We also obtain a result similar to Theorem 5.1.8 for general topological spaces if we

replace sequences with nets.

Theorem 5.2.20. Let (X, 7) and (Y,0) be topological spaces and let f : (X, 1) —
(Y,0). Then f is continuous at xo if and only if, whenever x — x¢ in X, we have
that f(xy) = f(xz) in Y.

Proof. Suppose f is continuous at xy. Let (z))xea be a net in X such that xz) — xo.
Let U be an open neighborhood of f(zy). Then f~!(U) is an open neighborhood
of xg. Since x), — xg, there exists A\g € A such that, for all A\ > Ay, we have that
zx € f7HU). Then, for all A > )\, we have that f(x)) € U and so f(z)) — f(z0).

For the other direction, suppose f is not continuous at xy. Then, for some open
neighborhood V' of f(z), we have that f(U) € V, for all open neighborhoods U of
xo. Let A be the set of all open neighborhoods of zy and define < on A by U; < Uy if
and only if Uy D Us. Since f(U) € V for all U € A, let 2y € U such that f(xy) ¢ V,
for all U € A. Then (zy)yea is anet in X and xy — 9 but f(xy) does not converge
to f(xo) since V is an open neighborhood of xy but f(zy) ¢ V, forall U € A. O

An important consequence of the above theorem is the following theorem.

Theorem 5.2.21. Let X be a set and let (X;,7;) be topological spaces for all i € I.
For each i € I, let f; : X — X; and set F = {f;|i € I}. Let T be the weak topology
generated on X by F. A net (x))rep converges to x € X if and only if fi(z)) EN fi(zx)
for allv € 1.
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Proof. Let i € I and suppose x) A 2. Since 7 is the weakest topology on X which
makes all the elements of F continuous, f; : (X,7) — (X;,7;) is continuous. Hence,
by Theorem 5.2.20, we have that f;(x)) = f;(z).

For the other direction, suppose fi(xy) — fi(x) for all i € I. Let B be a basic open
neighborhood of x in X. Then there exists n € Z,, 7y,...,4, € [ and O,, € 7,,, for
all k=1,...,n, such that

B = fi_l(Oh) N f;l(Oiz) n---nN fi_l(Oin)-
Since B is an open neighborhood of x, we have that x € fizl(Oik) forallk=1,...,n,
and so f;, (z) € O,
there exists Ay such that, if A > A, then f; (x)) € O;,. Pick A¢ to be greater than

or equal to all Aj,...,\,. Then, for A\ > Ao, we have that f; (z,) € O, for all
i=1,...nand so x) € B. O

for all £k = 1,...n. By our assumption, for each £ = 1,...,n,

Recall that the product topology on a product space can be viewed as the weak
topology generated by the projection maps. Hence, the above theorem immediately

implies the following corollary.

Corollary 5.2.22. Let (X;, ;) be a topological space for all i € I. Let X =[.., X,
with the product topology T and let (x\)xen be a net in X. Then (x))ren converges
to x € X if and only if m(x\) = mi(x) for alli € 1.

As we have already discussed, often times, the collection of topological spaces (X;, 7;)
X, then

becomes Y7, or rather, the set of functions f : I — Y. In this setting, the above

for all € I, are all the same, say (Y,0). The product space X = [].,

corollary tells us that a net (z))aea in Y converges to 2 € Y if and only if (i) =
x(i) for all i € I since m;(xy) = x(i) for all ¢ € 1.

To be even more precise, we have that if R¥ is equipped with the product topology,

then a net (f\)xea converges to some f € R® if and only if fy(z) — f(x) for all
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x € R. Hence, nets in R® converge precisely when we have pointwise convergence.
Furthermore, since we have already seen that R¥ is not first countable, to use the-
orems 5.2.17 and 5.2.20 for R¥, we have to investigate the pointwise convergence of
nets. For example, suppose we have a set A in R¥ and we want to show that f € A.
[t suffices to show that there exists a net (f\)aea in A such that fy(z) — f(z) for
all z € R. The next example illustrates a standard method for proving a function

T : R® — RF is continuous when R® has the product topology.

Example 5.2.23. Fix t € R and consider the function 7' : R® — R¥ defined by
T(f)(z) = f(xz +t) for all x € R. Assume RE has the product topology in the
domain and codomain. To prove that 7" is continuous, by Theorem 5.2.20 and the
discussion above, it is enough to show that if (f))xecx is & net in RR and there exists
f € R® such that f\(z) — f(z) for all € R, then we have that T'(f))(z) = T(f)(z)
for all x € R. In this case, checking that T'(f\)(z) — T'(f)(x) is fairly trivial since it
is equivalent to checking that f\(z +t) — f(x +t) which we know is the case since
t+x € R and we are assuming that f\(y) — f(y) for all y € R (just take y = x +1).

Thus, the function 7" is continuous.

The next two exercises are both standard homework problems in an analysis class
for sequences in R (or R™). Here, we are able to prove them in more generality for

nets in general topological spaces.

Exercise 5.2.24. Let (X, 7) be a topological space and suppose ())xea is a net in
X such that EN x, for some z € X. Prove every subnet of (x)),ea also converges

to x.

Exercise 5.2.25. Let (X, 7) be a topological space and suppose ())xea iS a net in
X. Let x € X. Prove that if every subnet of (z))xea has a subnet which converges
to x, then x) A x. Hint: Suppose not. That is, suppose there erists an open
neighborhood O of x such that, for all \g € A, there exists A > g such that z ¢ O.
Define M = {\ € Axy ¢ O}. For p € M, define N\, = p. Thus, (Tx,)uem s a

subnet of (z))ren. Now find a contradiction.
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