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8 CHAPTER 4. NEW TOPOLOGIES FROM OLD

4.1 The Subspace Topology

Suppose (X, d) is a metric space and let Y ⊆ X. There is a very obvious way to then

de�ne a metric d0 on Y . Simply, let d0 = d|Y×Y , since Y ×Y ⊆ X×X. Then (Y, d0)

is a metric space and the distance we have between two elements of Y agrees with

the distance between the same two elements when considered elements of X. Now,

what is the appropriate way to generalize this idea for general topological spaces?

To be precise, suppose (X, τ) is a topological space and Y ⊆ X. What is the natural

way to then de�ne a topology τ0 on Y which "agrees" with τ?

Let's reexamine the situation above with the metric spaces. Let O be an open set

in (Y, d0). Since the open balls form a base for the topology induced on Y by the

metric d0, there exists an index set I, {yi|i ∈ I} ⊆ Y , and {ri|i ∈ I} ⊆ (0,∞) such

that O =
⋃

i∈I BY (yi, ri), where BY (yi, ri) = {y ∈ Y |d0(yi, y) < ri}. If we denote

BX(yi, ri) = {x ∈ X|d(yi, x) < ri} then, for all i ∈ I, we have that BY (yi, ri) =

BX(yi, ri) ∩ Y . Hence,

O =
⋃
i∈I

BY (yi, ri) =
⋃
i∈I

(BX(yi, ri) ∩ Y ) =

(⋃
i∈I

BX(yi, ri)

)
∩ Y

and
⋃

i∈I BX(yi, ri) is an open set in (X, d). Hence, any open set O in (Y, d0) is of

the form O = U ∩ Y for some open set U in (X, d). Further, sets of the form U ∩ Y ,

where U is open in (X, d), form a topology on Y . This is then precisely how we want

a subset of a topological space to inherit a topology from its superset! The details

are given in the next proposition and de�nition.

Proposition 4.1.1. Let (X, τ) be a topological space and let Y ⊆ X. De�ne τ |Y =

{O ∩ Y |O ∈ τ}. Then τ |Y is a topology on Y .

Proof. Since ∅, X ∈ τ , we have that ∅ = ∅∩Y ∈ τ |Y and Y = X ∩Y ∈ τ |Y . Further,
let Oi∩Y ∈ τ |Y for all i ∈ I, where Oi ∈ τ . Then ∪i∈I(Oi∩Y ) = (∪i∈IOi)∩Y ∈ τ |Y ,
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since ∪i∈IOi ∈ τ . Lastly, suppose O1 ∩ Y,O2 ∩ Y, . . . , On ∩ Y ∈ τ |Y for some n ∈ Z+

and O1, O2, . . . , On ∈ τ . Then ∩n
i=1(Oi ∩ Y ) = (∩n

i=1Oi) ∩ Y ∈ τ |Y since ∩n
i=1Oi ∈ τ .

Therefore, τ |Y is a topology on Y .

De�nition 4.1.2. Let (X, τ) be a topological space and let Y ⊆ X. The relative

topology or subspace topology on Y is given by τ |Y = {O ∩ Y |O ∈ τ}.

Remark 4.1.3. Let (X, τ) be a topological space and let Y ⊆ X. If we refer to Y as

a subspace of X then it is understood that Y has the relative topology. Often times

in the literature, authors will discuss topological properties of subsets of topological

spaces without specifying a topology because they are understood to have the relative

topology.

Example 4.1.4. (i) Consider X = R with the usual topology τ and Y = [0, 10].

Examples of open sets in Y with the relative topology would then be

(a) (1, 2) since (1, 2) = (1, 2) ∩ [0, 10] and (1, 2) ∈ τ ,

(b) (5, 10] since (5, 10] = (5, 15) ∩ [0, 10] and (5, 15) ∈ τ , and

(c) [0, 1) since [0, 1) = (−1, 1) ∩ [0, 10] and (−1, 1) ∈ τ .

(ii) Consider R with the usual topology τ and Y = Z. Then the relative topology

on Y is the discrete topology. To see this, �rst notice that any singleton in Y is

open since, for any x ∈ Z, we have {x} = (x− 1
2
, x+ 1

2
)∩Z and (x− 1

2
, x+ 1

2
) ∈ τ .

Then, for any A ∈ P(Z), we can write A = ∪x∈A{x} which is open since it is a

union of open sets.

(iii) Let X be a nonempty set and equip it with the indiscrete topology. Then,

for any nonempty subset Y ⊆ X, the relative topology on Y is the indiscrete

topology on Y .

Exercise 4.1.5. Let (X, τ) be a topological space and let Y2 ⊆ Y1 ⊆ X. Let τ2 be

the relative topology on Y2 as a subspace of (X, τ). Let τ1 be the relative topology

on Y1 as a subspace of (X, τ), and let τ0 be the relative topology on Y2 as a subspace

of (Y1, τ1). Prove that τ0 = τ2.
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Remark 4.1.6. The above exercise tells us that in the situation where Y2 ⊆ Y1 ⊆ X,

where (X, τ) is a topological space, we can view Y2 as a subspace of Y1 and view Y2

as a subspace of X simultaneously, as the relative topology for Y2 as a subspace of

Y1 and the relative topology for Y2 as a subspace of X are the same.

If (X, τ) is a topological space and Y ⊆ X, then the open sets in Y are precisely

the intersection of Y with the open sets in X (we de�ne the relative topology this

way). The next theorem examines situations where other topological notions are

introduced to our subspace via intersection. Note that A
Y
denotes the closure of A

as a subset of Y with the sugspace topology whereas A
X
denotes the closure of A as

a subset of X with the original topology.

Theorem 4.1.7. Let (X, τ) be a topological space and let Y ⊆ X. Then:

(i) C ⊆ Y is closed in Y if and only if C = D ∩ Y where D is closed in X,

(ii) if A ⊆ Y , then A
Y
= A

X ∩ Y , and

(iii) If B is a basis for X, then {B ∩ Y |B ∈ B} is a basis for Y .

Proof. To prove (i), let C ⊆ Y be closed in Y with the subspace topology. Then

Y \C ∈ τ |Y and so, there exists U ∈ τ such that Y \C = U∩Y . Then C = (X\U)∩Y
and X \ U is closed in X, so let D = X \ U .

To prove (ii), let A ⊆ Y . Then,

A
Y
= ∩{C|C is closed in Y and C ⊇ A}

= ∩{D ∩ Y |D is closed in X and D ⊇ A}

= (∩{D|D is closed in X and D ⊇ A}) ∩ Y

= A
X ∩ Y
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To prove (iii), let B be a base for τ and let BY = {B ∩ Y |B ∈ B}. Let y ∈ Y . Then

there exists B ∈ B such that y ∈ B. Then y ∈ B ∩ Y ∈ BY . Next, let D1, D2 ∈ BY

and let y ∈ D1 ∩D2, where y ∈ Y . Then D1 = B1 ∩ Y and D2 = B2 ∩ Y for some

B1, B2 ∈ B. Hence, y ∈ B1 ∩ B2. Since B is a base for τ , there exists B3 ∈ B such

that y ∈ B3 ⊆ B1 ∩B2. And, since y ∈ Y , we have that

y ∈ B3 ∩ Y ⊆ B1 ∩B2 ∩ Y = (B1 ∩ Y ) ∩ (B2 ∩ Y ) = D1 ∩D2.

Example 4.1.8. Let X with relation ≤ be a totally ordered set with at least two

elements. Then, as discussed in the last chapter, we can equip X with the order

topology τ . Let Y ⊆ X with at least two elements. Then Y is a totally ordered

set with relation ≤ ∩(Y × Y ) (when we view ≤ as a subset of X ×X). Hence, we

can equip Y with the order topology τ0. Also, since Y is a subset of X, we can

equip Y with the relative topology τ1. One might then be tempted to believe that

τ0 = τ1 but this is not always the case. Indeed, it is easy to see that τ0 ⊆ τ1 since

a subbase for τ0 is the collection of sets of the form (a,∞)Y = {y ∈ Y |a < y} and

(−∞, a)y = {y ∈ Y | y < a} and we can write (a,∞)Y = (a,∞)X ∩ Y ∈ τ1 and

(−∞, a)Y = (−∞, a)X ∩ Y ∈ τ , where (a,∞)X = {x ∈ X| a < x} and (−∞, a)X =

{x ∈ X|x < a}. To see that τ1 is not always a subset of τ0, take X = R, with the

usual total ordering, Y = [0, 1) ∪ {5}. Then, in the subspace topology {5} is open,

since {5} = (4, 6) ∩ Y but {5} is not open with respect to the order topology since

any open set containing 5, with respect to the order, would need to also contain

points close to 1.

Theorem 4.1.9. Let (X, τ) and (Y, σ) be topological spaces and let f : (X, τ) →
(Y, σ) be continuous. Let A ⊆ X. Then f |A : (A, τ |A) → (Y, σ) is continuous.

Proof. Let f : (X, τ) → (Y, σ) be continuous and let A ⊆ X. Let O ∈ σ. Then

(f |A)−1(O) = f−1(O) ∩ A ∈ τ |A
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since f is continuous and so f |A is continuous.

Theorem 4.1.10. Let (X, τ) and (Y, σ) be a topological spaces and suppose X =

A ∪B where A,B ∈ τ . Let f : (X, τ) → (Y, σ). If f |A and f |B are continuous, then

f is continuous.

Proof. Let O ∈ σ. Then (f |A)−1(O) = f−1(O)∩A ∈ τ |A and (f |B)−1(O) = f−1(O)∩
B ∈ τ |B. Hence, there exists U1, U2 ∈ τ such that f−1(O) ∩ A = U1 ∩ A and

f−1(O)∩B = U2 ∩B. Since A,B ∈ τ , we then have that U1 ∩A,U2 ∩B ∈ τ . Then,

f−1(O) =
(
f−1(O) ∩ A

)
∪
(
f−1(O) ∩B

)
= (U1 ∩ A) ∪ (U2 ∩B) ∈ τ

since it is a union of elements from τ .

Exercise 4.1.11. Prove the above theorem where, instead of assuming that A,B ∈
τ , assume A and B are closed with respect to τ .

Theorem 4.1.12. Let (X, τ) and (Y, σ) be topological spaces and suppose Z ⊆ Y .

Let f : X → Z. Then f : (X, τ) → (Z, σ|Z) is continuous if and only if f : (X, τ) →
(Y, σ) is continuous.

Proof. For the forward direction, suppose f : (X, τ) → (Z, σ|Z) is continuous. Let

O ∈ σ. Since f(O) ⊆ Z, we have that f−1(O) = f−1(O∩Z) and O∩Z ∈ σ|Z . Since
f : (X, τ) → (Z, σ|Z) is continuous, we then have that f−1(O) = f−1(O ∩ Z) ∈ τ .

For the other direction, suppose f : (X, τ) → (Y, σ) is continuous. Let O ∈ σ|Z .
Then O = U ∩ Z for some U ∈ σ. Since f : (X, τ) → (Y, σ) is continuous, we have

that f−1(U) ∈ τ . But, f(X) ⊆ Z so f−1(O) = f−1(U ∩ Z) = f−1(U) ∈ τ .

Up to this point, we have had more of an analytic perspective and interpretation

of topology. At this stage, we can discuss some of the geometric interpretations of

topology.
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Example 4.1.13. 1. Let τ be the usual topology on R. Consider the function

f : ((0, 1)τ |(0,1)) → ((0, 100), τ |(0,100)) given by f(x) = 100x. Clearly f is a

continuous bijection and f−1 is also a continuous bijection. Hence, (0, 1) and

(0, 100), when equipped with the subspace topology inherited by (R, τ) are

homeomorphic. The geometric interpretation here is that topological spaces

can be stretched and keep their topological structure. We could also replace

the interval (0, 1) above with [0, 1] and the interval (0, 100) with [0, 100] to see

that [0, 1] and [0, 100] are also homeomorphic.

2. Let τ be the usual topology on R and let σ be the usual topology on R2. Let

G = {(x, x2)|x ∈ [0, 1]} and de�ne f : ([0, 1], τ |[0,1]) → (G, σ|G) by f(x) =

(x, x2). Then f is a homeomorphism and so [0, 1] and G are homeomorphic

when equipped with their respective subspace topologies inherited by the usual

topologies. The geometric interpretation here is that we can bend topological

spaces without changing the topological structure.

The above examples illustrate how topological spaces can be stretched and bent and

maintain their topological structure. We tend to rely more on intuition when dis-

cussing such scenarios. For example, if we equip the unit sphere S1 = {(x, y)|x2 +

y2 = 1} with the subspace topology inherited by R2 with the usual topology and

we equip the unit square (just the surface, not the interior) with vertices (−1
2
,−1

2
),

(−1
2
, 1
2
), (1

2
,−1

2
), and (1

2
, 1
2
) with the subspace topology inherited by the usual topol-

ogy on R2, then it is easy to see that they are homeomorphic since we can bend

and stretch S1 into the unit cube. We use intuition rather than proof primarily be-

cause, while it is clear these spaces are homeomorphic, providing a homeomorphism

between them can be rather technical and tedious.

While we are allowed to stretch and bend topological spaces and maintain their struc-

ture, what we are not allowed to do is break them into pieces or glue parts together.

For example, taking an interval such as [0, 1] or [0, 1) and trying to wrap it into a

circle so that it is homeomorphic to S1 will not work as we cannot glue the endpoints
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together. We also can't take an interval like [0, 1] and try to break it into two in-

tervals such as [0, 1
2
] and (1

2
, 1] or [0, 1

2
] and [1

2
, 1]. The reasons for this will become

clear later when we discuss properties of topological spaces which are preserved by

homeomorphisms. At this time, it is rather di�cult (but not impossible) to prove

such spaces are not homeomorphic as we would be tasked with proving that it is not

possible to de�ne a homeomorphism between them.

Since we were studying the subspace topology here, we were very explicit about the

subspace topologies being used and from which topologies they were inherited. In

general, this can be rather tedious and so some collective understandings are in order.

For example, if we mention that the interval [0, 1] has the usual topology, what we

mean is that [0, 1] has the subspace topology it inherits from the usual topology on

R. Similarly, to say the unit square has the usual topology, we mean that it has the

subspace topology it inherits from R2 with the usual topology.

4.2 The Product Topology

There are many ways one can de�ne a topology on the product of topological spaces

especially if it is an in�nite product of metric spaces. We will begin the discussion

by de�ning a topology on a �nite product of topological spaces which has a very

natural de�nition. Before we do so, let's look at the case when we take the product

of R, with the usual topology, with itself.

Let τ be the usual topology on R. It's natural to then ask if we can de�ne a topology

τ0 on R×R = R2 by making τ0 the collection of all sets of the form O1 ×O2, where

O1, O2 ∈ τ . Unfortunately, this does not produce a topology on R2. For example,

(0, 2)× (0, 2) ∪ (0, 1)× (0, 3) /∈ τ0. Thankfully, τ0 forms a base for a topology on R2

which is precisely the usual topology on R2!

Proposition 4.2.1. Let τ be the usual topology on R and de�ne B to be the collection
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of all sets of the form O1 ×O2, where O1, O2 ∈ τ . Then B is a base for a topology τ1

on R2. Further, if τ2 is the usual topology on R2, then τ1 = τ2.

Proof. First, let's prove B is a base for a topology on R2. Let (x, y) ∈ R2. Then

(x, y) ∈ (x−1, x+1)× (y−1, y+1) ∈ B. Now, let O1×O2, U1×U2 ∈ B and suppose

(x, y) ∈ (O1 ×O2) ∩ (U1 × U2). But,

(O1 ×O2) ∩ (U1 × U2) = (O1 ∩ U1)× (O2 ∩ U2) ∈ B.

Hence, B is a base for a topology τ1 on R2.

To prove τ1 = τ2, �rst note that basic open sets with respect to τ1 are open rectangles

while basic open sets with respect to τ2 are open disks. Given a basic open set O

in τ1, it is therefore an open rectangle. Given a point x ∈ O, we can �nd an open

disk U containing x inside of O. Thus, we can write O as an arbitrary union of open

disks and so O ∈ τ2. Hence, τ1 ⊆ τ2. Similarly, given a basic open set O in τ2, it is

an open disk and, for any x ∈ O, we can �nd an open rectangle containing x which

is inside of O. Thus, we can write O as a union of open rectangles. Hence, O ∈ τ1.

Therefore, τ1 = τ2.

Thus, for a �nite product of topological spaces, it seems as though the natural way

to de�ne a topology is to take as a base all the products of open sets from their

corresponding topologies. Of course, we still have to check that this will produce a

topology on the product in this more general case. Further, this strategy also works

for an in�nite product of topological spaces so we will check this as well. Although,

for in�nite products, we typically do not de�ne the topology this way. We'll discuss

this a bit later.

Theorem 4.2.2. Let (Xα, τα) be a topological space for all α ∈ I, for some index

set I. Let B be the collection of all sets of the form
∏

α∈I Oα, where Oα ∈ τα. Then

B forms a base for a topology on
∏

α∈I Xα.
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Proof. Let f ∈
∏

α∈I Xα. Since Xα ∈ τα for all α ∈ I, we have that
∏

α∈I Xα ∈ B.

Let
∏

α∈I Oα,
∏

α∈I Uα ∈ B where Oα, Uα ∈ τα for all α ∈ I. Further, suppose

f ∈
(∏

α∈I Oα

)
∩
(∏

α∈I Uα

)
. Then f(α) ∈ Oα ∩ Uα for all α ∈ I and Oα ∩ Uα ∈ τα

so
∏

α∈I(Oα ∩ Uα) ∈ B and

f(α) ∈
∏
α∈I

(Oα ∩ Uα) ⊆

(∏
α∈I

Oα

)
∩

(∏
α∈I

Uα

)
.

Hence, B is a base for a topology on
∏

α∈I Xα.

De�nition 4.2.3. Let (Xα, τα) be a topological space for all α ∈ I, for some index

set I. The topology generated by the base B given above is called the box topology

on
∏

α∈I Xα.

Example 4.2.4. As we saw earlier, if R is equipped with the usual topology, then

the box topology on R2 is precisely the usual topology on R2. Similarly, if R is

equipped with the usual topology, then for any n ∈ Z+, the box topology on Rn is

precisely the usual topology on Rn.

Exercise 4.2.5. Let (X, τ) and (Y, σ) be topological spaces. Let A be a closed set

in X and B be a closed set in Y . Prove that A × B is a closed set in X × Y when

we equip X × Y with the box topology.

Note that we also have the following theorem which we will make use of later.

Theorem 4.2.6. Let (Xα, τα) be a topological space for all α ∈ I, for some index

set I. Suppose Bα is a base for τα, for all α ∈ I. Let B be the collection of all sets

of the form
∏

α∈I Bα, where Bα ∈ Bα. Then B forms a base for the box topology on∏
α∈I Xα.

Proof. Let τ be the box topology on
∏

α∈I Xα. We �rst want to show that B forms

a base for some topology on
∏

α∈I Xα. To do this, we have to check that B satis�es

properties (i) and (ii) of Theorem ??.
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For property (i), let f ∈
∏

α∈I Xα. Then f(α) ∈ Xα and Bα is a base for τα so there

exists Bα ∈ Bα such that f(α) ∈ Bα. Then f ∈
∏

α∈I Bα ∈ B.

For property (ii), let B1, B2 ∈ B and let f ∈ B1 ∩ B2. Well, B1 =
∏

α∈I Bα,1

and B2 =
∏

α∈I Bα,2 for some Bα,1, Bα,2 ∈ Bα. Then, since f ∈ B1 ∩ B2, we have

that f(α) ∈ Bα,1 ∩ Bα,2. Since Bα is a base, there exists Bα,3 ∈ Bα such that

f(α) ∈ Bα,3 ⊆ Bα,1 ∩Bα,2. Then, f ∈
∏

α∈I Bα,3 ⊆ B1 ∩B2.

So, we now have that B is a base for a topology, say σ, on
∏

α∈I Xα. It is now left

to show that σ = τ . Since B ⊆ τ , we immediately obtain that σ ⊆ τ . For the other

inclusion, let O be a basic open set with respect to τ . Then O =
∏

α∈I Oα, where

Oα ∈ τα, for all α ∈ I. Let f ∈ O. Then, f(α) ∈ Oα and Bα is a base for τα so there

exists Bα,f ∈ τα such that f(α) ∈ Bα,f ⊆ Oα. Then

f ∈
∏
α∈I

Bα,f ⊆
∏
α∈I

Oα = O

and
∏

α∈I Bα,f ∈ B so,

O =
⋃
f∈O

(∏
α∈I

Bα,f

)
∈ σ.

Hence, τ = σ and so B is a base for τ .

For in�nite products of topological spaces, the box topology turns out to be too

strong of a topology. That is, there are far too many open sets. For this reason, we

often use a di�erent topology, which we will now discuss.

Theorem 4.2.7. Let (Xα, τα) be a topological space for all α ∈ I, for some index set

I. De�ne B to be the collection of all sets of the form
∏

α∈I Oα, where Oα ∈ τα and

Oα = Xα for all but a �nite number of α ∈ I. Then B forms a base for a topology

on
∏

α∈I Xα.

Proof. We have to show B satis�es properties (i) and (ii) of Theorem ??. For property
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(i), let f ∈
∏

α∈I Xα. Since
∏

α∈I Xα ∈ B we are done.

For property (ii), let B1, B2 ∈ B and let f ∈ B1 ∩ B2. Well, B1 =
∏

α∈I Oα and

B2 =
∏

α∈I Uα where Oα, Uα ∈ τα, Oα = Xα for all but �nitely many α ∈ I,

and Uα = Xα for all but �nitely many α ∈ I. Since f ∈ B1 ∩ B2, we have that

f(α) ∈ Oα ∩Uα for all α ∈ I. Note that there can only be �nitely many α such that

Oα ∩ Uα ̸= Xα. For these α, let Vα = Oα ∩ Uα ∈ τα, since τα is a topology. For all

other α, let Vα = Xα. Then f ∈
∏

α∈I Vα ⊆ B1 ∩ B2, where
∏

α∈I Vα ∈ B. Thus, we
have also checked property (ii) and so B forms a base for a topology on

∏
α∈I Xα.

De�nition 4.2.8. Let (Xα, τα) be a topological space for all α ∈ I, for some index

set I. De�ne B to be the collection of all sets of the form
∏

α∈I Oα, where Oα ∈ τα

and Oα = Xα for all but a �nite number of α ∈ I. Then the topology generated by

B is called the product topology on
∏

α∈I Xα.

Note that if I is a �nite set, then the product topology and the box topology on∏
α∈I Xα are equal. As with the box topology, if each topology in our product has

a base, then we can use basic open sets to de�ne a base for the product topology as

the next proposition shows.

Proposition 4.2.9. Let (Xα, τα) be a topological space for all α ∈ I, for some index

set I.Suppose Bα is a base for τα, for all α ∈ I. De�ne B to be the collection of all

sets of the form
∏

α∈I Bα, where Oα ∈ Bα and Bα = Xα for all but a �nite number

of α ∈ I. Then B is a base for the product topology on
∏

α∈I Xα.

Proof. The proof is a following exercise.

Exercise 4.2.10. Prove Proposition 4.2.9. Hint: The proof is very similar to the

proof of Theorem 4.2.6. We just have to make sure that when we create B ∈ B, the
αth coordinate is not equal to Xα for only �nitely many α.

It is often easier to use projections to describe open sets in the product topology.

Let us �rst de�ne a projection in this setting.
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De�nition 4.2.11. Let (Xα, τα) be a topological space for all α ∈ I, for some index

set I. For each γ ∈ I, de�ne πγ :
∏

α∈I Xα → Xγ by πγ(f) = f(γ) where we are

de�ning the elements f ∈
∏

α∈I Xα as functions f : I →
∏

α∈I Xα where f(α) ∈ Xα

for all α ∈ I. The map πγ is the projection map from
∏

α∈I Xα to Xγ or simply

the γ-projection map.

Example 4.2.12. Perhaps some examples would help to clarify the situation.

(i) Suppose I = Z+ and Xα = R, for all α ∈ I. Then the elements of
∏

α∈I Xα are

precisely all the real-valued sequences indexed by Z+. Take, for example, the

sequence f = (1, 1
4
, 1
9
, . . . ). Then π2(f) =

1
4
while π10(f) =

1
100

.

(ii) Suppose instead that I = R and Xα = R, for all α ∈ I. Then the elements

of
∏

α∈I Xα are precisely all the functions f : R → R. As an example, let

f ∈
∏

α∈I Xα be given by f(x) = x2. Then π2(f) = f(2) = 4 while π√
3(f) =

f(
√
3) = 3.

With projections, we now have another way to describe basic open sets in the product

topology. If (Xα, τα) are topological spaces and B is de�ned as in De�inition 4.2.8

so that it is a base for the product topology on
∏

α∈I Xα, then any U ∈ B can be

written as

U = π−1
α1
(Oα1) ∩ π−1

α2
(Oα2) ∩ · · · ∩ π−1

αn
(Oαn)

for some n ∈ Z+ and Oαk
∈ ταk

, for k = 1, 2, . . . , n. If Bα is a base for τα, for

all α ∈ I, we can instead require above that each Oαk
∈ Bαk

instead of ταk
, for

k = 1, 2, . . . , n. With this interpretation of the elements of B it is easy to see that

each projection map is continuous. The next theorem clari�es this but also states

that the product topology is the weakest topology
∏

α∈I Xα which makes all of the

projection maps continuous.

Theorem 4.2.13. Let (Xα, τα) be a topological space for each α ∈ I, where I is

some index set. Let τ be the product topology on
∏

α∈I Xα. Then, for each γ ∈ I, the
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projection map πγ :
∏

α∈I Xα → Xγ is continuous. Further, if τ0 is another topology

on
∏

α∈I Xα for which each projection map πγ :
∏

α∈I Xα → Xγ is continuous, then

τ ⊆ τ0.

Proof. From the discussion immediately preceding the statement of the theorem,

it is clear that πγ is continuous for each γ ∈ I. Thus, it remains to prove that

the product topology, τ , is the weakest topology which makes all of the projection

maps continuous. Let τ0 be another topology on
∏

α∈I Xα such that πγ is continuous

for all γ ∈ I. Let O be a basic open set in τ . Then there exists n ∈ Z+ and

α1, α2, . . . , αn ∈ I such that

O = π−1
α1
(Oα1) ∩ π−1

α2
(Oα2) ∩ · · · ∩ π−1

αn
(Oαn)

where Oαk
∈ ταk

for all k = 1, 2, . . . , n. Since παk
is continuous with respect to τ0,

we have that π−1
αk
(Oαk

) ∈ τ0 for all k = 1, 2, . . . , n. Thus,

O = π−1
α1
(Oα1) ∩ π−1

α2
(Oα2) ∩ · · · ∩ π−1

αn
(Oαn) ∈ τ0

since it is a �nite intersection of elements from τ0. Hence, τ ⊆ τ0 and so τ is weaker

than τ0.

The next theorem gives us a way to prove that a function from a topological space

into a space equipped with the product topology is continuous by simply checking

whether the projection maps composed with the function are continuous.

Theorem 4.2.14. Let (X, τ) be a topological space and let (Yα, σα) be a topological

space for each α ∈ I, where I is some index set. Let σ be the product topology on∏
α∈I Yα and let f : (X, τ) → (

∏
α Yα, σ). If πα ◦ f : (X, τ) → (Yα, σα) is continuous,

for all α ∈ I, then f : (X, τ) → (
∏

α Yα, σ) is continuous.

Proof. Suppose πα ◦ f : (X, τ) → (Yα, τα) is continuous, for all α ∈ I. Let O be a
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basic open set in σ. Then there exists n ∈ Z+, α1, α2, . . . , αn ∈ I, and Oαk
∈ σαk

such that

O = π−1
α1
(Oα1) ∩ π−1

α2
(Oα2) ∩ · · · ∩ π−1

αn
(Oαn).

Since παk
◦ f is continuous, we have that (παk

◦ f)−1(Oαk
) ∈ τ for all k = 1, 2, . . . , n.

Then,

f−1(O) = f−1
(
π−1
α1
(Oα1) ∩ π−1

α2
(Oα2) ∩ · · · ∩ π−1

αn
(Oαn)

)
= f−1

(
π−1
α1
(Oα1)

)
∩ f−1

(
π−1
α2
(Oα2)

)
∩ · · · ∩ f 1− (π−1

αn
(Oαn)

)
= (πα1 ◦ f)−1(Oα1) ∩ (πα2 ◦ f)−1(Oα2) ∩ · · · ∩ (παn ◦ f)−1(Oαn)

∈ τ

since it is a �nite intersection of sets from τ . Thus, f is continuous.

An application of the above theorem is the following theorem.

Theorem 4.2.15. Let (X, τ) be a topological space and let f : (X, τ) → R and g :

(X, τ) → R, where R is equipped with the usual topology. If f and g are continuous,

then f + g is continuous.

Proof. De�ne h : (X, τ) → R × R by h(x) = (f(x), g(x)), where R × R has the

product topology (which is equal to the usual topology). Let π1 be the projection

map onto the �rst coordinate of R×R and π2 be the projection map onto the second

coordinate. Then π1◦h = f , which is continuous, and π2◦h = g, which is continuous.

Hence, by Theorem 4.2.15, the function h is continuous. Now, consider the function

+ : R×R → R where +(a, b) = a+ b. While it looks a bit di�erent, the fact that +

is continuous is equivalent to the fact the sum of two convergent sequences converges

to the sum of their limits from calculus class. If this is unsatisfactory, let B(z, r) be

an open ball in R, for some x ∈ R and r > 0. Then +−1(B(z, r)) is the open region

in the xy-plane strictly above the line y = −x + z − r and strictly below the line
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y = −x + z + r, which is clearly an open set. Then, by Exercise ??, the function

f + g = + ◦ h is continuous.

Corollary 4.2.16. Let n ∈ Z+, α1, α2, . . . , α2 ∈ R, and fi : (X, τ) → R be contin-

uous for each i = 1, 2, . . . , n, where (X, τ) is a topological space and R is equipped

with the usual topology. Then α1f1 + α2f2 + · · ·+ αnfn is continuous.

Proof. It su�ces to prove that if f : (X, τ) → R is continuous and α ∈ R, then αf

is continuous, where (αf)(x) = αf(x), for all x ∈ X. Once this is complete, we can

simply appeal to Theorem 4.2.15. If we de�ne g : R → R by g(x) = αx, then g is

obviously continuous as g is just a line from our high school classes. If we would

rather use the ϵ-δ de�nition of continuous functions, then, for any ϵ > 0, simply let

δ = ϵ
|α|+1

. Then, we have that αf = g ◦ f and so, by Exercise ??, the function αf is

continuous.

De�nition 4.2.17. Let (X, τ) be a topological space. We say a set A ⊆ X is dense

in X if A = X.

If you have taken a course in real analysis, then you're aware that Q = R. Hence,

we would say Q is dense in R. The next exercise gives us a useful way to check if a

subset is dense.

Exercise 4.2.18. Let (X, τ) be a topological space and let A be a subset of X. The

set A is dense in X if and only if, for every nonempty O ∈ τ , we have A ∩O ̸= ∅.

Theorem 4.2.19. Let (X, τ) be a topological space and let σ be the usual topology

on R. Suppose f : (X, τ) → (R, σ) and g : (X, τ) → (R, σ) are continuous. Let

A = {x ∈ X| f(x) = g(x)}. If A is dense in X, then f(x) = g(x) for all x ∈ X.

Proof. The reader is walked through the proof in the following exercise.

Exercise 4.2.20. Prove Theorem 4.2.19. Hint: Let h : (X, τ) → (R, σ), where

h(x) = f(x)− g(x). From Corollary 4.2.16, we know h is continuous. Now, use the
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fact that h is continuous to prove A is closed. Now, since A is closed, what does that

tell us about the relationship between A and A? You should now be able to conclude

that A = X which means f(x) = g(x) for all x ∈ X.

The above theorem tells us that for any continuous function f from a general topo-

logical space (X, τ) into R, with the usual topology, knowing what f does on a dense

subset of X completely determines what f does on all of X. This fact has a variety

of applications. Suppose, for example, that we have a continuous function f we are

searching for but all we know is what it does on a dense subset of X. If we can �nd a

continuous function g on X which agrees with f on that dense subset, then we must

have that f = g.

Suppose instead, we are in a setting where we have the function f on hand (suppose

it's a very complicated function with no nice rule to tell us where to send each element

of the domain) but it would be very tedious to send a full description of the function

to someone else (perhaps over the internet with multiple levels of security). We could,

instead, describe what the function does on any dense subset of the domain, of our

choosing, and have the person on the other side �nd a function g agreeing with f on

that dense subset (assuming we have an e�cient way to do so). The person on the

other side then knows the function g that they found is actually f !

As was mentioned at the end of Chapter 2, there is no metric we can de�ne on RR

so that a sequence (fn)
∞
n=1 in RR converges with respect to the metric if and only

if the sequence converges pointwise (although we still have not seen why). There

is, however, a topology we can de�ne on RR which does this and it is precisely the

product topology, as the next example shows.

Example 4.2.21. For the sake of clarity, in a real analysis course, we say a sequence

of functions (fn)
∞
n=1 converges pointwise to a function f if, for all x ∈ R, fn(x) →

f(x). To be precise, fn → f pointwise if, for all x ∈ R and all ϵ > 0, there exists

N ∈ Z+ such that for all n ≥ N , we have that |fn(x)− f(x)| < ϵ. Now, let (fn)
∞
n=1
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be a sequence in RR equipped with the product topology τ and f ∈ RR. We claim

that fn
τ−→ f if and only if fn → f pointwise.

To see this, �rst suppose fn
τ−→ f . Let x ∈ R and ϵ > 0. Let d denote the usual

metric on R. Then U = π−1
x (Bd(f(x), ϵ)) is a basic open set in the product topology

so there exists N ∈ Z+ such that, for all n ≥ N , we have that fn ∈ π−1
x (Bd(f(x), ϵ)).

That is, πx(fn) ∈ Bd(f(x), ϵ), and so, |fn(x)− f(x)| < ϵ. Hence, fn(x) → f(x). This

holds for all x ∈ R and so fn → f pointwise.

Now, suppose fn → f pointwise. Let U be a basic open neighborhood of f . Then

there exists k ∈ Z+ and x1, x2, . . . , xk, y1, y2, . . . , yk ∈ R as well as ϵ1, ϵ2, . . . , ϵk ∈
(0,∞) such that

U = π−1
x1
(Bd(y1, ϵ1)) ∩ π−1

x2
(Bd(y2, ϵ2)) ∩ · · · ∩ π−1

xk
(Bd(yk, ϵk)). (4.1)

Since f ∈ U , we know that |f(xi) − yi| < ϵi, for all i = 1, 2, . . . , k. Now, for

i = 1, 2, . . . , k, let γi = ϵi − |f(xi)− yi| and de�ne

U0 = π−1
x1
(Bd(f(x1), γ1)) ∩ π−1

x2
(Bd(f(x2), γ2)) ∩ · · · ∩ π−1

xk
(Bd(f(xk), γk)).

Then f ∈ U0 ⊆ U . For each i = 1, 2, . . . , k, since fn → f pointwise, there exists

Ni ∈ Z+ such that, for all n ≥ Ni, we have that |fn(xi) − f(xi)| < γi. Let N =

max{N1, N2, . . . , Nk}. Then, for n ≥ N , we have that |fn(xi) − f(xi)| < γi, for all

i = 1, 2, . . . , k and so fn ∈ U0 ⊆ U . Hence, fn
τ−→ f .

If we equip RR with the box topology τ rather than the product topology, then

pointwise convergence does not imply convergence with respect to τ . It is worth

reexamining where the proof above breaks down. Note that if we are using the box

topology, then in Equation (4.1), we would have to take the set U to be an in�nite

intersection of sets. If we then look at how we de�ned N later on, we could not de�ne

N to be the maximum of all the Ni as there would now be in�nitely many of them.
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This is one argument as to why we say, for in�nite products, the box topology is "too

strong." Having coordinate-wise convergence does not guarantee overall convergence.

4.3 The Weak Topology

We saw in the last section that the product topology τ de�ned on the product of

topological spaces (Xα, τα), α ∈ I, is the weakest topology which makes all of the

projection maps continuous. We also saw that we can construct a base for the

product topology with sets of the form

U = π−1
α1
(Oα1) ∩ π−1

α2
(Oα2) ∩ · · · ∩ π−1

αn
(Oαn).

for n ∈ Z+ and Oαi
∈ ταi

for α1, . . . , αn ∈ I. Hence, the sets of the form π−1
α (Oα)

form a subbase for the product topology. So, in retrospect, we could have simply

de�ned the product topology to be the topology generated by this subbase.

There is nothing preventing us from generalizing this situation to other functions

and other topological spaces besides the product spaces. This is the idea behind the

weak topology.

De�nition 4.3.1. Let X be a set, I be an index set, and (Xα, τα) be topological

spaces for all α ∈ I. Further, suppose fα : X → Xα for all α ∈ I. Let F = {fα|α ∈
I} and let C = {f−1

α (Oα)|α ∈ I and Oα ∈ τα}. Then C is a subbase for a topology

on X called the weak topology on X generated by F . By construction, it is the

weakest topology on X which makes all the functions in F continuous.

Quite often, the topological spaces (Xα, τα) are all the same topological space, in

which case, the de�nition above isn't quite so technical looking. For example, say

we have a set X and a collection of functions F , where each f ∈ F is of the form

f : X → R, where R is equipped with the usual topology τ . Then the weak topology
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on X is the topology with subbase {f−1(O) : O ∈ τ and f ∈ F} and it is the weakest

topology which makes all the functions in F continuous. The following example

illustrates this scenario.

Example 4.3.2. Let X = C([0, 1]), where C([0, 1]) is the set of continuous real-

valued functions on [0, 1]. Recall that C([0, 1]) ⊂ R[0,1]. Let I = {[a, b]| 0 ≤ a < b ≤
1}. Then, for each [a, b] ∈ I, de�ne e[a,b] : X → R by e[a,b](f) =

∫ b

a
f(t)dt, for all

f ∈ X, where we equip R with the usual topology. Now, let F = {e[a,b]| [a, b] ∈ I}.
Then F generates a topology on X and it is the weakest topology which makes every

element of F continuous.

If (X, τ) and (Y, σ) are topological spaces and σ is the weak topology induced by a

collection of maps F = {fα|α ∈ I}, where fα : Y → (Zα, ηα), where (Zα, ηα) is a

topological space for each α ∈ I, then the next theorem tells us how to check if a

function f : (X, τ) → (Y, σ) is continuous.

Theorem 4.3.3. Let (X, τ) and (Y, σ) be topological spaces and σ be the weak topol-

ogy induced by a collection of maps F = {fα|α ∈ I}, where fα : Y → (Zα, ηα), where

(Zα, ηα) is a topological space for each α ∈ I. We then have that f : (X, τ) → (Y, σ)

is continuous if and only if fα ◦ f : (X, τ) → (Zα, ηα) is continuous.

Proof. Let f be continuous and let α ∈ I. Since σ is the weakest topology making

each fα continuous, fα is continuous. Hence, fα ◦ f is continuous.

For the other direction, suppose fα ◦ f : (X, τ) → (Zα, ηα) is continuous, for all

α ∈ I. Let O be a basic open set in Y . Then there exists n ∈ Z+, α1, α2, αn ∈ I and

Oαk
∈ ηαk

for k = 1, 2, . . . , n, such that

O = f−1
α1

(Oα1) ∩ f−1
α2

(Oα2) ∩ · · · ∩ f−1
αn

(Oαn).

For each k = 1, 2, . . . , n, since Oαk
∈ ηαk

and fαk
◦ f is continuous, we have that
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(fαk
◦ f)−1(Oαk

) ∈ τ . Then,

f−1(O) = f−1
(
f−1
α1

(Oα1) ∩ f−1
α2

(Oα2) ∩ · · · ∩ f−1
αn

(Oαn)
)

= (fα1 ◦ f)−1(Oα1) ∩ (fα2 ◦ f)−1(Oα2) ∩ · · · ∩ (fαn ◦ f)−1(Oαn)

∈ τ

since it is a �nite intersection of elements from τ . Hence, f is continuous.

If we are again in the scenario where all of the topological spaces (Zα, ηα) are the

same, say Zα = R and ηα = η, where η is the usual topology on R. Then, if we have
a collection of functions F = {fα : Y → (R, η) : α ∈ I} and we equip Y with the

weak topology induced by F , to check if a function f : (X, τ) → (Y, σ) is continuous,

we simply have to check if fα ◦ f : (X, τ) → (R, η) is continuous for all α ∈ I.

If the set F of functions we are using to generate a weak topology is small, then

it will produce a weaker topology than a larger set of functions. To be precise, if

F1 ⊆ F2, then the topology induced by F1 will be weaker than the topology induced

by F2 (checking this fact is a following exercise). Hence, we have to be careful about

what we include and exclude from F . We don't want to include so many functions

that we produce too strong of a topology but we also don't want to exclude so many

so that the topology does not have desirable properties. One way to ensure the

topology generated has some of the properties we would like it to have is to require

that it seperates points. We will see in a later section the properties this requirement

produces. We will de�ne what we mean by F separating points after we give the

mentioned exercise.

Exercise 4.3.4. Let X be a set and let (Y, σ) be a topological space. Let F1 and F2

be collections of functions f : X → (Y, σ). Let τ1 be the weak topology on X induced

by F1 and τ2 be the weak topology on X induced by F2. Prove that if F1 ⊆ F2,

then τ1 ⊆ τ2.
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De�nition 4.3.5. Let F = {fα : X → Yα|α ∈ I}. We say F seperates points in

X if, for any x1, x2 ∈ X, where x1 ̸= x2, there exists α ∈ I such that fα(x1) ̸= fα(x2).

Roughly speaking, a collection of functions F seperates points in X if, given x1, x2 ∈
X with x1 ̸= x2, at least one member of F recognizes that x1 and x2 are distinct

elements of X. One consequence of F not seperating points can be seen in the

following exercise.

Exercise 4.3.6. Let X be a set and let F = {fα : X → (Y, σα) : α ∈ I} and equip

X with the weak topology τ induced by F . Suppose F does not seperate points.

That is, there exists x1, x2 ∈ X such that fα(x1) = fα(x2) for all α ∈ I. Prove that

a set U is an open neighborhood of x1 if and only if U is an open neighborhood of

x2.

The above Exercise shows that if F does not recognize distinct points, then the

topology it generates will not recognize distinct points either.

Example 4.3.7. (i) Let (X, d) be a metric space and, for each x ∈ X, de�ne

fx : X → R by fx(y) = d(x, y), for all y ∈ X. Now, let F = {fx|x ∈ X}. Then
the topology induced by F on X is precisely the topology on X induced by the

metric d. Further, F seperates points since, given y1, y2 ∈ X, where y1 ̸= y2,

we have that fy1(y1) = 0, while fy1(y2) ̸= 0.

(ii) Consider the set X = RZ+ which, if you recall, is the set of all real-valued

sequences (xn)
∞
n=1. De�ne ek : X → R, where R has the usual topology, by

ek((xn)
∞
n=1) = xk, for all (xn)

∞
n=1 ∈ X. Now, let F = {ek|k ∈ Z+}. Then F

generates a topology onX. Further, F seperates points. To see this, suppose we

have two sequences (xn)
∞
n=1 and (yn)

∞
n=1 in X which are not equal. Then there

must exist m ∈ Z+ such that xm ̸= ym. Hence, em((xn)
∞
n=1) ̸= em((yn)

∞
n=1).

(iii) In Example 4.3.2 from earlier, the set F given there would seperate points

although a proof of this would require some knowledge of analysis which we do
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not assume in these notes. If we modify Example 4.3.2 and suppose instead

that X is the set of Riemann integrable real-valued functions on [0, 1], then we

still have that X ⊂ R[0,1]. Let I = {[a, b]| 0 ≤ a < b ≤ 1}. Then, for each

[a, b] ∈ I, de�ne e[a,b] : X → R by e[a,b](f) =
∫ b

a
f(t)dt, for all f ∈ X. Now,

let F = {e[a,b]| [a, b] ∈ I}. Then F generates a topology on X which does not

seperate points. To see this, simply consider the functions f1 and f2 on [0, 1],

where f1(
1
2
) = 1 and f1(x) = 0, if x ̸= 1

2
, while f2(

1
2
) = 2 and f2(x) = 0, if

x ̸= 1
2
. Then f1 ̸= f2 but e[a,b](f1) = e[a,b](f2) for all [a, b] ∈ I.

Exercise 4.3.8. (i) Let X = RR and, for each x ∈ X, de�ne ex : X → R by

ex(f) = f(x). Let F = {ex|x ∈ R}. Prove that F seperates points of X.

(ii) Let X = C(R) and, for each r ∈ Q, de�ne er : X → R by er(f) = f(r). Let

F = {er| r ∈ Q}. Prove that F seperates points of X. Hint: Use Theorem

4.2.19 and the fact that Q = R.

4.4 The Quotient Topology

If we have maps from a set to some topological spaces, then the weak topology

gives us a way to use the topologies of the codomains of the functions to de�ne a

topology on the domain. The quotient topology does the opposite. Given an onto

map f : X → Y , the quotient topology gives us a way to de�ne a topology on Y

using the topology on X.

De�nition 4.4.1. Let (X, τ) be a topological space and let Y be a set. Further,

suppose f : (X, τ) → Y is onto. Let

τf = {O ⊆ Y | f−1(O) ∈ τ}.

Then τf is a topology on Y called the quotient topology induced on Y by f . The
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topological space (Y, τf ) is called a quotient space of X and the function f is called

a quotient map.

Of course, we still have to verify that, indeed, τf is actually a topology on Y , which

we do in the next proposition.

Proposition 4.4.2. Let (X, τ) be a topological space and let Y be a set. Further,

suppose f : (X, τ) → Y is onto. Let

τf = {O ⊆ Y | f−1(O) ∈ τ}.

Then τf is a topology on Y . Further, τf is the strongest topology which makes f

continuous. That is, if σ is a topology on Y and f : (X, τ) → (Y, σ) is continuous,

then σ ⊆ τf .

Proof. First, we want to prove τf is a topology on Y . Well, ∅ ∈ τf since f−1(∅) =
∅ ∈ τ and Y ∈ τf since f−1(Y ) = X ∈ τ . Now, let Oi ∈ τf for all i ∈ I. Then

f−1(Oi) ∈ τ , for all i ∈ I. Then we have that

f−1

(⋃
i∈I

Oi

)
=
⋃
i∈I

f−1(Oi) ∈ τ

and so ∪i∈IOi ∈ τf . Hence, τf is closed under arbitrary unions. Next, let n ∈ Z+

and let O1, O2, . . . , On ∈ τf . Then f−1(O1), f
−1(O2), . . . , f

−1(On) ∈ τ and so

f−1

(
n⋂

i=1

Oi

)
=

n⋂
i=1

f−1(Oi) ∈ τ

and so ∩n
i=1Oi ∈ τf . Hence, τf is closed under �nite intersections and thus, τf is a

topology on Y .

Now, to show τf is the strongest topology on Y which makes f continuous, suppose

σ is a topology on Y such that f : (X, τ) → (Y, σ) is continuous. Let O ∈ σ. Since
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f : (X, τ) → (Y, σ) is cointinuous, we have that f−1(O) ∈ τ . This then implies that

O ∈ τf . Hence, σ ⊆ τf and so τf is stronger than σ.

At this stage, the reader might be wondering why we call (Y, τf ) a "quotient space"

and τf the "quotient topology" as this probably makes the reader think of quotient

spaces in an abstract algebra class or, possibly, quotient spaces in analysis. The

reason for this is important so we will explain it in detail.

Suppose (X, τ) is a topological space, Y is a set, and f : (X, τ) → Y is onto.

Now, de�ne the quotient topology τf on Y . Next, de�ne a relation ∼f on X by

x1 ∼f x2 ⇔ f(x1) = f(x2). Then ∼f is an equivalence relation on X (checking

this is a following exercise). Since ∼f is an equivalence relation, we can discuss

the equivalence classes for ∼f of X. Let X/∼f be the set of all equivalence classes

of X. That is, X/∼f = {[x]|x ∈ X} and recall that the equivalence classes of X

partition X into disjoint sets (that is, the equivalence classes are disjoint and the

union of all equivalence classes equals X). Next, de�ne a topology τ/∼f on X/∼f by

O ∈ τ/∼f ⇔ ∪[x]∈O[x] ∈ τ . We will check in a following proposition that τ/∼f is

in fact a topology on X/∼f . With this construction, we then have that (X/∼f , τ/∼f)

is homeomorphic to (Y, τf ) so we can (and do) view (Y, τf ) as the quotient space

(X/∼f , τ/∼f). Of course, we have several things to now check.

Exercise 4.4.3. Let f : X → Y and de�ne a relation ∼f on X by x1 ∼f x2 ⇔
f(x1) = f(x2). Prove ∼f is an equivalence relation on X.

Proposition 4.4.4. Let (X, τ) be a topological space, Y a set, and f : (X, τ) → Y

be onto. De�ne X/∼f = {[x]|x ∈ X}, where ∼f is the equivalence relation given in

Exercise 4.4.3. De�ne τ/∼f to be the collection of subsets O of X/∼f where

O ∈ τ/∼f ⇔
⋃

[x]∈O

[x] ∈ τ.

Then τ/∼f is a topology on X/∼f .
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Proof. First, ∅ ∈ τ/∼f since ∪[x]∈∅[x] = ∅ ∈ τ . Also, X/∼f ∈ τ/∼f since ∪[x]∈X [x] =

X ∈ τ .

Next, let Oi ∈ τ/∼f for all i ∈ I. Then ∪[x]∈Oi
[x] ∈ τ , for all i ∈ I. Then

⋃
[x]∈∪i∈IOi

[x] =
⋃
i∈I

 ⋃
[x]∈Oi

[x]

 ∈ τ

since it is an arbitrary union of elements of τ . Hence, ∪i∈IOi ∈ τ/∼f .

Finally, let n ∈ Z+ and O1, O2, . . . , On ∈ τ/∼f . Then ∪[x]∈Oi
[x] ∈ τ , for all i =

1, 2, . . . , n and so ⋃
[x]∈∩n

i=1Oi

[x] =
n⋂

i=1

 ⋃
[x]∈Oi

[x]

 ∈ τ

since it is a �nite intersection of elements from τ . Hence, ∩n
i=1Oi ∈ τ/∼f .

Thus, τ/∼f is a topology on X/∼f .

Lastly, we have to check that we do, in fact, get the homeomorphism mentioned

earlier between (X/∼f , τ/∼f) and (Y, τf ).

Theorem 4.4.5. Let (X, τ) be a topological space, Y a set, and f : (X, τ) → Y be

onto. Then (X/∼f , τ/∼f) is homeomorphic to (Y, τf ).

Proof. De�ne h : (Y, τf ) → (X/∼f , τ/∼f) by h(y) = f−1(y), for all y ∈ Y . Since f is

onto, h is well-de�ned. Clearly, h is a bijection, so it su�ces to show that h and h−1

are continuous. Let's �rst show h is continuous. To this end, let O ∈ τ/∼f . We want

to show h−1(O) ∈ τf . By the de�nition of τf , it su�ces to show f−1(h−1(O)) ∈ τ .
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Recall by the de�nition of τ/∼f that we have ∪[x]∈O[x] ∈ τ . Then,

h−1(O) = {y ∈ Y |f−1(y) ∈ O}

= {f(x0)| [x0] ∈ O}

=

f(x0)

∣∣∣∣∣∣x0 ∈
⋃

[x]∈O

[x]


= f

 ⋃
[x]∈O

[x]


and so, f−1(h−1(O)) = f−1(f(∪[x]∈O[x])) = ∪[x]∈O[x] ∈ τ , and so h−1(O) ∈ τf .

Now, to show h−1 is continuous, let O ∈ τf . Then we know, by the de�nition of τf ,

that f−1(O) ∈ τ . We want to show that h(O) ∈ τ/∼f , i.e., that ∪[x]∈h(O)[x] ∈ τ . Note

that h(O) = {f−1(y)| y ∈ O}, so

⋃
[x]∈h(O)

[x] =
⋃
y∈O

f−1(y) = f−1(O) ∈ τ.

Therefore, h(O) ∈ τ/∼f and hence h−1 is continuous. Therefore, h is a homeomor-

phism between (Y, τf ) and (X/∼f , τ/∼f).

Suppose we have f : (X, τ) → (Y, σ) which is onto and continuous. Proposition 4.4.2

then tells us that σ ⊆ τf . The next proposition gives conditions for σ = τf but we

�rst need a couple of de�nitions.

De�nition 4.4.6. Let f : (X, τ) → (Y, σ), where (X, τ) and (Y, σ) are topological

spaces. If f(O) ∈ σ for all O ∈ τ , then we say the function f is open. If f(C) is

closed for all closed sets C, then we say the function f is closed.

Thus, a function is open if it maps open sets to open sets and is closed if it maps

closed sets to closed sets. We are now ready for the above mentioned proposition.
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Proposition 4.4.7. Let (X, τ) and (Y, σ) be topological spaces and suppose f :

(X, τ) → (Y, σ) is continuous. If f is open or closed, then σ = τf , where τf is

the quotient topology on Y induced by f .

Proof. We already know, by Proposition 4.4.2, that σ ⊆ τf .First, suppose f is open.

Let O ∈ τf . By construction of τf , we have that f−1(O) ∈ τ and, since f is

open, O = f(f−1(O) ∈ σ and so σ = τf . Now, suppose f is closed. Let O ∈ τf .

By construction of τf , we have that f−1(O) ∈ τ . Hence, f−1(O)c is closed with

respect to τ . Since f is closed, f(f−1(O)c) is closed with respect to σ and, since

Oc = f(f−1(O)c), we have that Oc is closed with respect to σ. That is, O ∈ σ.

Note that when we combine Proposition 4.4.7 with Theorem 4.4.5, we get the fol-

lowing corollary.

Corollary 4.4.8. Let (X, τ) and (Y, σ) be topological spaces. If f : (X, τ) → (Y, σ)

is onto, continuous, and either open or closed, then (Y, σ) is homeomorphic to

(X/∼f , τ/∼f).

Proof. The proof follows immediately from Proposition 4.4.7 and Theorem 4.4.5

Admittedly, this section has been rather technical. The diligent reader will hopefully

�nd the next list of examples well worth the hard work.

Example 4.4.9. (i) Consider X = [0, 2π] with the usual topology τ (technically,

τ = η|[0,2π], where η is the usual topology on R) and Y = S1 with the usual

topology σ. De�ne f : (X, τ) → (Y, σ) by f(t) = (cos (t), sin (t)). Then f

is onto, continuous, and open. Hence, by Corollary 4.4.8, ([0,2π]/∼f , τ/∼f) is

homeomorphic to (S1, σ). Now, if we think about the elements of [0,2π]/∼f , we

will see that

[0,2π]/∼f = {{t}| 0 < t < 2π} ∪ {{0, 2π}} .
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So, [0,2π]/∼f is essentially [0, 2π] except that we make no distinction between 0

and 2π. Further, the topology τ/∼f is essentially τ except that it also makes

no distinction between 0 and 2π. Hence, we get that S1 is homeomorphic to

[0, 2π] as long as we "identify" the endpoints 0 and 2π.

(ii) First note that S1 × [0, 2π] is a cylinder in R3 with radius 1 and height 2π.

Equip the cylinder with the usual topology σ. Now, de�ne f : [0, 2π]×[0, 2π] →
S1 × [0, 2π] by f(t, s) = (cos (t), sin (t), s) where we equip [0, 2π]× [0, 2π] with

the usual topology τ . Then f is continuous, onto, and open so S1 × [0, 2π] is a

quotient space of [0, 2π]× [0, 2π] and

([0,2π]×[0,2π]/∼f , τ/∼f) ∼= (S1 × [0, 2π], σ) .

Further, the equivalence classes of the quotient space are given by

[0,2π]×[0,2π]/∼f = {{(t, s)}| 0 < t < 2π , s ∈ [0, 2π]}∪{{(0, s), (2π, s)}| s ∈ [0, 2π]} .

Hence, the elements of [0,2π]×[0,2π]/∼f are precisely the elements of [0, 2π]× [0, 2π]

except we identify points of the form (0, s) to points of the form (2π, s), for all

s ∈ [0, 2π]. Graphically, we picture [0, 2π]× [0, 2π] as a square. If we then make

the identi�cations mentioned, it is identifying the left edge of the square to the

right edge, thus creating a cylinder.

(iii) Let us now avoid the technical aspects of these constructions and focus on iden-

tifying di�erent edges of the square [0, 2π]× [0, 2π] with each other. First, iden-

tify the left edge of the square with the right edge, as we did in the above exam-

ple, to form a cylinder. Then identify the bottom edge with the top edge so that

points of the form (t, 0) are identi�ed with points of the form (t, 2π). We then

bend the cylinder around to form a donut shape, called the torus. The torus

is often denoted by T or S1 × S1 since the quotient map for this construction

is f : [0, 2π]× [0, 2π] → S1 × S1, where f(t, s) = (cos (t), sin (t), cos (s), sin (s)).
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(iv) Suppose instead we start with the square [0, 2π]× [0, 2π] and identify the bot-

tom edge with the top edge but we twist the bottom edge before doing so.

Technically, we are identifying points of the form (t, 0) with points of the form

(2π − t, 2π). We then end up with a topological object called the Möbius

strip.

(v) Now, lets start with the square [0, 2π]× [0, 2π], identify the left edge with the

right edge to form a cylinder. We will then identify the top edge with the

bottom edge but twist the bottom edge before doing so. This then creates

an object called the Klein bottle. It is easiest to picture by imagining, once

we have formed the cylinder, picking up the bottom from it's circular edge,

stretching it out, inserting it through the side of the cylinder, up through the

top of the cylinder, and then matching it to the top circle by curling the sides

down. Unfortunately, this interpretation of the Klein bottle is misleading as

it does not actually intersect itself like this. Just like the torus, the image of

the quotient map is actually a subset of R4 so the Klein bottle is avoiding this

self-intersection by using a fourth dimension.

(vi) Lastly, as you can probably guess, take the square [0, 2π] × [0, 2π] once more,

pick up the left edge and twist it, before identifying it with the right edge.

Then, pick up the bottom edge and twist it, before identifying it with the top

edge. The resulting object is called the projective plane (or real projective

plane) and is denoted most often by RP 2. This is a rather di�cult object to try

to picture. Part of the issue is that, like the Klein bottle, it cannot be properly

thought of as a subset of R3.

Exercise 4.4.10. Give quotient maps for the Möbius strip, Klein bottle, and pro-

jective plane.
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