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4.1 The Subspace Topology

Suppose (X, d) is a metric space and let Y C X. There is a very obvious way to then
define a metric dy on Y. Simply, let dy = d|y«y, since Y x Y C X x X. Then (Y, dp)
is a metric space and the distance we have between two elements of Y agrees with
the distance between the same two elements when considered elements of X. Now,
what is the appropriate way to generalize this idea for general topological spaces?
To be precise, suppose (X, 7) is a topological space and Y C X. What is the natural

way to then define a topology 79 on Y which "agrees" with 77

Let’s reexamine the situation above with the metric spaces. Let O be an open set
in (Y,dy). Since the open balls form a base for the topology induced on Y by the
metric do, there exists an index set I, {y;[i € I} C Y, and {r;|i € I} C (0,00) such
that O = (,c; By (4i,7:), where By (y;,75) = {y € Y|do(yi,y) < ri}. If we denote
Bx(yi, i) = {x € X|d(y;,x) < r;} then, for all i € I, we have that By (y;,r;) =
Bx(yi, ;) NY. Hence,

O =JBy(yiri) = JBx(yi,r)nY) = (U BX(:%’»”)) ny

iel iel iel
and (J;c; Bx(yi,73) is an open set in (X, d). Hence, any open set O in (Y, dy) is of
the form O = UNY for some open set U in (X, d). Further, sets of the form UNY,
where U is open in (X, d), form a topology on Y. This is then precisely how we want
a subset of a topological space to inherit a topology from its superset! The details

are given in the next proposition and definition.
Proposition 4.1.1. Let (X, 1) be a topological space and let Y C X. Define T|y =

{ONY|O € 7}. Then 1|y is a topology on Y.

Proof. Since ), X € 7, we have that ) = )NY € 7]y and Y = X NY € 7|y. Further,
let O;,NY € 7‘|y forall 7 € 1, where O; € 7. Then Uie[(OiﬂY) = (Uie[Oi)ﬂY S 7'|y7
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since U;c;O; € 7. Lastly, suppose O1NY,0.NY,...,0,NY € 7|y for some n € Z,
and O1,0,,...,0, € 7. Then NI, (0; NY) = (N,0;)NY € 7|y since N?_,0; € T.
Therefore, 7|y is a topology on Y. O]

Definition 4.1.2. Let (X, 7) be a topological space and let Y C X. The relative
topology or subspace topology on Y is given by 7]y = {ONY|0 € 7}.

Remark 4.1.3. Let (X, 7) be a topological space and let Y C X. If we refer to Y as
a subspace of X then it is understood that Y has the relative topology. Often times
in the literature, authors will discuss topological properties of subsets of topological
spaces without specifying a topology because they are understood to have the relative

topology.

Example 4.1.4. (i) Consider X = R with the usual topology 7 and Y = [0, 10].
Examples of open sets in Y with the relative topology would then be

(a) (1,2) since (1,2) = (1,2) N [0,10] and (1,2) € T,
(b) (5,10] since (5,10] = (5,15) N[0, 10] and (5,15) € 7, and
(¢) [0,1) since [0,1) = (—1,1) N [0,10] and (—1,1) € T.

(ii) Consider R with the usual topology 7 and Y = Z. Then the relative topology
on Y is the discrete topology. To see this, first notice that any singleton in Y is
open since, for any = € Z, we have {z} = (z—3,z+3)NZ and (z—3,2+3) € T.
Then, for any A € P(Z), we can write A = U,ea{x} which is open since it is a

union of open sets.

(iii) Let X be a nonempty set and equip it with the indiscrete topology. Then,
for any nonempty subset Y C X, the relative topology on Y is the indiscrete
topology on Y.

Exercise 4.1.5. Let (X, 7) be a topological space and let Yo CY; C X. Let 7 be
the relative topology on Y, as a subspace of (X, 7). Let 71 be the relative topology
on Y] as a subspace of (X, 7), and let 7y be the relative topology on Y as a subspace

of (Y1, 7). Prove that 7o = 7.
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Remark 4.1.6. The above exercise tells us that in the situation where Y5 C Y; C X,
where (X, 7) is a topological space, we can view Y3 as a subspace of Y] and view Y5
as a subspace of X simultaneously, as the relative topology for Y5 as a subspace of

Y] and the relative topology for Y5 as a subspace of X are the same.

If (X,7) is a topological space and Y C X, then the open sets in Y are precisely
the intersection of Y with the open sets in X (we define the relative topology this
way). The next theorem examines situations where other topological notions are
introduced to our subspace via intersection. Note that A" denotes the closure of A
as a subset of Y with the sugspace topology whereas A% denotes the closure of A as

a subset of X with the original topology.

Theorem 4.1.7. Let (X, 7) be a topological space and let Y C X. Then:

(i) C CY is closed inY if and only if C = DNY where D is closed in X,
(ii) if ACY, then A =4%n Y, and

(111) If B is a basis for X, then {BNY|B € B} is a basis for'Y.

Proof. To prove (i), let C' C Y be closed in Y with the subspace topology. Then
Y'\C € 7|y and so, there exists U € 7 such that Y\C = UNY. Then C = (X\U)NY
and X \ U is closed in X, solet D = X \ U.

To prove (ii), let A C Y. Then,

A= N{C| C is closed in Y and C' O A}
={DNY|Dis closed in X and D D A}
= (N{D|Dis closed in X and D D A})NY
—A'ny
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To prove (iii), let B be a base for 7 and let By = {BNY|B € B}. Let y € Y. Then
there exists B € B such that y € B. Then y € BNY € By. Next, let Dy, Dy € By
and let y € Dy N Dy, where y € Y. Then Dy = BiNY and Dy = B, NY for some
Bi1, By € B. Hence, y € B; N By. Since B is a base for 7, there exists B3 € B such
that y € B3 C B; N By. And, since y € Y, we have that

yEBnggBlmBQHY:(BlﬂY)m<BgﬂY):D1ﬂD2.

]

Example 4.1.8. Let X with relation < be a totally ordered set with at least two
elements. Then, as discussed in the last chapter, we can equip X with the order
topology 7. Let Y C X with at least two elements. Then Y is a totally ordered
set with relation < N(Y x Y) (when we view < as a subset of X x X). Hence, we
can equip Y with the order topology 7. Also, since Y is a subset of X, we can
equip Y with the relative topology 7. One might then be tempted to believe that
To = 71 but this is not always the case. Indeed, it is easy to see that 7y C 7y since
a subbase for 7y is the collection of sets of the form (a,0)y = {y € Y|a < y} and
(—o00,a), = {y € Y|y < a} and we can write (a,00)y = (a,00)x NY € 7 and
(—00,a)y = (—o0,a)x NY € 7, where (a,00)x = {z € X|a < z} and (—o0,a)x =
{z € X|x < a}. To see that 7 is not always a subset of 79, take X = R, with the
usual total ordering, Y = [0,1) U {5}. Then, in the subspace topology {5} is open,
since {5} = (4,6) NY but {5} is not open with respect to the order topology since
any open set containing 5, with respect to the order, would need to also contain

points close to 1.

Theorem 4.1.9. Let (X, 7) and (Y, o) be topological spaces and let f : (X, 7) —
(Y, o) be continuous. Let A C X. Then fla: (A, 7|a) = (Y,0) is conlinuous.

Proof. Let f:(X,7) = (Y,0) be continuous and let A C X. Let O € 0. Then

(fla)H0) = FHO)NA€ET|a
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since f is continuous and so f|4 is continuous. O]

Theorem 4.1.10. Let (X,7) and (Y,0) be a topological spaces and suppose X =
AU B where A,Be . Let f:(X,7) — (Y,0). If fla and f|p are continuous, then

f s continuous.

Proof. Let O € 0. Then (f]4)"1(0) = f7H(O)NA € 7|4 and (f|p)"1(O) = f~HO)N
B € 7|p. Hence, there exists Uy, Us € 7 such that f~}(O) N A = U; N A and
f~HO)N B = U, N B. Since A, B € 7, we then have that Uy N A, Uy N B € 7. Then,

1Oy = (1 o)n4A)u(f(0O)nB)=(UiNA)U(UsNB) €T

since it is a union of elements from 7. O

Exercise 4.1.11. Prove the above theorem where, instead of assuming that A, B €

7, assume A and B are closed with respect to 7.

Theorem 4.1.12. Let (X, 7) and (Y,0) be topological spaces and suppose Z C Y.
Let f: X — Z. Then f: (X, 7) = (Z,0|z) is continuous if and only if f: (X, 7) —

(Y, 0) is continuous.

Proof. For the forward direction, suppose f : (X,7) — (Z,0|z) is continuous. Let
O € o. Since f(O) C Z, we have that f~1(O) = f~1(ONZ) and ONZ € o|z. Since
f:(X,7) = (Z,0]z) is continuous, we then have that f~*(0) = f~*(ONZ) e 7.

For the other direction, suppose f : (X,7) — (Y,0) is continuous. Let O € o|z.
Then O = U N Z for some U € o. Since f : (X,7) — (Y, 0) is continuous, we have
that f~Y(U) € 7. But, f(X) C Zso f~1(0) = f 1 (UNZ)=fU) er. 0

Up to this point, we have had more of an analytic perspective and interpretation

of topology. At this stage, we can discuss some of the geometric interpretations of

topology.
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Example 4.1.13. 1. Let 7 be the usual topology on R. Consider the function
2 ((0,1)7]0,1y) — ((0,100), 7|(0,100)) given by f(x) = 100x. Clearly f is a
continuous bijection and f~! is also a continuous bijection. Hence, (0,1) and
(0,100), when equipped with the subspace topology inherited by (R,7) are
homeomorphic. The geometric interpretation here is that topological spaces
can be stretched and keep their topological structure. We could also replace
the interval (0, 1) above with [0, 1] and the interval (0, 100) with [0, 100] to see
that [0, 1] and [0, 100] are also homeomorphic.

2. Let 7 be the usual topology on R and let o be the usual topology on R?. Let
G = {(z,2%)|z € [0,1]} and define f : ([0,1],7]j01) — (G,0lc) by f(z) =
(z,2%). Then f is a homeomorphism and so [0,1] and G are homeomorphic
when equipped with their respective subspace topologies inherited by the usual
topologies. The geometric interpretation here is that we can bend topological

spaces without changing the topological structure.

The above examples illustrate how topological spaces can be stretched and bent and
maintain their topological structure. We tend to rely more on intuition when dis-
cussing such scenarios. For example, if we equip the unit sphere S; = {(z,y)|z* +
y> = 1} with the subspace topology inherited by R? with the usual topology and
we equip the unit square (just the surface, not the interior) with vertices (—%, —%),
(—%, %), (%, —%), and (%, %) with the subspace topology inherited by the usual topol-
ogy on R2, then it is easy to see that they are homeomorphic since we can bend
and stretch S; into the unit cube. We use intuition rather than proof primarily be-
cause, while it is clear these spaces are homeomorphic, providing a homeomorphism
between them can be rather technical and tedious.

While we are allowed to stretch and bend topological spaces and maintain their struc-
ture, what we are not allowed to do is break them into pieces or glue parts together.
For example, taking an interval such as [0,1] or [0,1) and trying to wrap it into a

circle so that it is homeomorphic to S; will not work as we cannot glue the endpoints



14 CHAPTER 4. NEW TOPOLOGIES FROM OLD

together. We also can’t take an interval like [0,1] and try to break it into two in-
tervals such as [0, 1] and (3,1] or [0, 1] and [1,1]. The reasons for this will become
clear later when we discuss properties of topological spaces which are preserved by
homeomorphisms. At this time, it is rather difficult (but not impossible) to prove
such spaces are not homeomorphic as we would be tasked with proving that it is not

possible to define a homeomorphism between them.

Since we were studying the subspace topology here, we were very explicit about the
subspace topologies being used and from which topologies they were inherited. In
general, this can be rather tedious and so some collective understandings are in order.
For example, if we mention that the interval [0, 1] has the usual topology, what we
mean is that [0, 1] has the subspace topology it inherits from the usual topology on
R. Similarly, to say the unit square has the usual topology, we mean that it has the

subspace topology it inherits from R? with the usual topology.

4.2 The Product Topology

There are many ways one can define a topology on the product of topological spaces
especially if it is an infinite product of metric spaces. We will begin the discussion
by defining a topology on a finite product of topological spaces which has a very
natural definition. Before we do so, let’s look at the case when we take the product

of R, with the usual topology, with itself.

Let 7 be the usual topology on R. Tt’s natural to then ask if we can define a topology
7o on R x R = R? by making 7y the collection of all sets of the form O; x O, where
01,0, € 7. Unfortunately, this does not produce a topology on R2. For example,
(0,2) x (0,2) U (0,1) x (0,3) ¢ 75. Thankfully, 75 forms a base for a topology on R?

which is precisely the usual topology on R?!

Proposition 4.2.1. Let 7 be the usual topology on R and define B to be the collection
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of all sets of the form Oy x Oy, where O1,05 € 7. Then B is a base for a topology 1

on R%. Further, if 7o is the usual topology on R?, then 11 = 7.

Proof. First, let’s prove B is a base for a topology on R?. Let (z,y) € R% Then
(x,y) € (x—1,z+1)x (y—1,y+1) € B. Now, let Oy x Oz, U; x Uy € B and suppose
(x,y) € (01 X 02) N (Ul X Ug) But,

(01 X 02) N (U1 X UQ) = (01 N U1> X (02 N UQ) e B.

Hence, B is a base for a topology 7, on R2.

To prove 7, = Ty, first note that basic open sets with respect to 71 are open rectangles
while basic open sets with respect to 75 are open disks. Given a basic open set O
in 7, it is therefore an open rectangle. Given a point x € O, we can find an open
disk U containing x inside of O. Thus, we can write O as an arbitrary union of open
disks and so O € 75. Hence, 3 C 7. Similarly, given a basic open set O in 7y, it is
an open disk and, for any x € O, we can find an open rectangle containing x which
is inside of O. Thus, we can write O as a union of open rectangles. Hence, O € 7.

Therefore, 7 = 7. O

Thus, for a finite product of topological spaces, it seems as though the natural way
to define a topology is to take as a base all the products of open sets from their
corresponding topologies. Of course, we still have to check that this will produce a
topology on the product in this more general case. Further, this strategy also works
for an infinite product of topological spaces so we will check this as well. Although,
for infinite products, we typically do not define the topology this way. We’ll discuss
this a bit later.

Theorem 4.2.2. Let (X,,7,) be a topological space for all o € I, for some index
set 1. Let B be the collection of all sets of the form ], .; Oa, where Oy € 7o. Then
B forms a base for a topology on [],c; Xa-



16 CHAPTER 4. NEW TOPOLOGIES FROM OLD

Proof. Let f € [],c; Xa- Since X, € 7, for all a € I, we have that [] ., X, € B.

acl

Let [].c; Oa:Iloe; Ua € B where O,, U, € 7, for all @ € I. Further, suppose
f € (ITae; Oa) N (IToe; Ua)- Then f(a) € OuNU, for all « € I and O, NU, € 7,
50 [[,er(Oa NU,) € B and

fla) e [J(0anU,) C (H oa> n <H Ua> .

ael ael ael

Hence, B is a base for a topology on [[,.; Xa. O]

Definition 4.2.3. Let (X,,7,) be a topological space for all o € I, for some index
set I. The topology generated by the base B given above is called the box topology

on HaEI XCV'

Example 4.2.4. As we saw earlier, if R is equipped with the usual topology, then
the box topology on R? is precisely the usual topology on R2. Similarly, if R is
equipped with the usual topology, then for any n € Z,, the box topology on R" is
precisely the usual topology on R".

Exercise 4.2.5. Let (X, 7) and (Y, 0) be topological spaces. Let A be a closed set
in X and B be a closed set in Y. Prove that A x B is a closed set in X x Y when
we equip X X Y with the box topology.

Note that we also have the following theorem which we will make use of later.

Theorem 4.2.6. Let (X,,7,) be a topological space for all o € I, for some index
set I. Suppose B, is a base for 7,, for all o € I. Let B be the collection of all sets
of the form [[.c; Ba, where B, € B,. Then B forms a base for the box topology on

HaEI XC“'

Proof. Let 7 be the box topology on [] ., X,. We first want to show that B forms
a base for some topology on [] ., Xs. To do this, we have to check that B satisfies

properties (i) and (ii) of Theorem ?77.



4.2. THE PRODUCT TOPOLOGY 17

For property (i), let f € [],c; Xo- Then f(a) € X, and B, is a base for 7, so there
exists B, € B, such that f(a) € B,. Then f € [[.,.; Ba € B.

ael

For property (ii), let By, By € B and let f € B N By, Well, By = [[,c; Ba
and By = [],c; Bayg for some B, 1, B,z € B,. Then, since f € By N By, we have
that f(a) € Bai1 N Baa. Since B, is a base, there exists B,3 € B, such that
fla) € Bas € Bai N Bgaya. Then, fe]],c;Bas € BiN Bs.

So, we now have that B is a base for a topology, say o, on [[,.; Xo. It is now left
to show that ¢ = 7. Since B C 7, we immediately obtain that ¢ C 7. For the other
inclusion, let O be a basic open set with respect to 7. Then O =[] .; Oq. where
Oy € Ty, for all € I. Let f € O. Then, f(a) € O, and B, is a base for 7, so there
exists B, s € T, such that f(a) € B,y € O,. Then

fellBasc]]0O=0

acl acl

and [],.; Ba,s € B so,
0= LJ (]i[li%f) € o.
feo \ael

Hence, 7 = ¢ and so B is a base for 7. O

For infinite products of topological spaces, the box topology turns out to be too
strong of a topology. That is, there are far too many open sets. For this reason, we

often use a different topology, which we will now discuss.

Theorem 4.2.7. Let (X,,7.) be a topological space for all o € 1, for some index set
I. Define B to be the collection of all sets of the form []
O, = X, for all but a finite number of a € I. Then B forms a base for a topology

on Hael X‘l'

wet Oa, where Oy € 7, and

Proof. We have to show B satisfies properties (i) and (ii) of Theorem ??. For property
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(i), let f e ],c; Xa. Since [[,o; Xo € B we are done.

For property (ii), let By,By € B and let f € B; N By. Well, By = [],c; Oa and
By = [lae; Ua where On, Uy € 7o, Oq = X, for all but finitely many o € I,
and U, = X, for all but finitely many o € I. Since f € By N B,, we have that
fla) € O,NU, for all @ € I. Note that there can only be finitely many « such that
O, NU, # X,. For these a, let V, = O, NU, € 7,, since 7, is a topology. For all
other a, let V, = X,. Then f €[] ., Vo € By N By, where [], ., Vo € B. Thus, we
have also checked property (ii) and so B forms a base for a topology on [[,.; Xo. O

Definition 4.2.8. Let (X,,7,) be a topological space for all € I, for some index
set I. Define B to be the collection of all sets of the form Hael O, where O, € 7,
and O, = X, for all but a finite number of @ € I. Then the topology generated by
B is called the product topology on [] ., Xa.

Note that if I is a finite set, then the product topology and the box topology on
[I,c; Xao are equal. As with the box topology, if each topology in our product has
a base, then we can use basic open sets to define a base for the product topology as

the next proposition shows.

Proposition 4.2.9. Let (X,,T,) be a topological space for all o € I, for some index
set I.Suppose B, is a base for 7., for all a« € I. Define B to be the collection of all
sets of the form Hael B., where O, € B, and B, = X, for all but a finite number
of « € 1. Then B is a base for the product topology on ], c; Xa-

Proof. The proof is a following exercise. m

Exercise 4.2.10. Prove Proposition 4.2.9. Hint: The proof is very similar to the
proof of Theorem 4.2.6. We just have to make sure that when we create B € B, the

ath coordinate is not equal to X, for only finitely many a.

It is often easier to use projections to describe open sets in the product topology.

Let us first define a projection in this setting.
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Definition 4.2.11. Let (X,, 7,) be a topological space for all a € I, for some index
set I. For each v € I, define m, : [ ., Xo — X, by m,(f) = f(7) where we are
defining the elements f € [[,.; Xo as functions f: I — [[.,.; Xo where f(a) € X,
for all & € I. The map ., is the projection map from [[_.; X, to X, or simply

acl ael

aecl
the y-projection map.

Example 4.2.12. Perhaps some examples would help to clarify the situation.

(i) Suppose I =Z, and X, =R, for all @ € I. Then the elements of [] ., X, are
precisely all the real-valued sequences indexed by Z,. Take, for example, the

sequence f = (1,4,5,...). Then my(f) = 1 while mo(f) = 155-

(ii) Suppose instead that I = R and X, = R, for all & € I. Then the elements
of [[,c; Xa are precisely all the functions f : R — R. As an example, let
f € Ilaes Xa be given by f(z) = 2. Then my(f) = f(2) = 4 while 7 5(f) =

F(V3) =3

With projections, we now have another way to describe basic open sets in the product
topology. If (X,,7,) are topological spaces and B is defined as in Defiinition 4.2.8

so that it is a base for the product topology on []..; X,, then any U € B can be

acl
written as
U = 7Toj11<00(1) N 71—;21<Oa2) NN 71-Oj»ﬂl (Oan)
for some n € Z; and O,, € 7,,, for k = 1,2,...,n. If B, is a base for 7,, for

all & € I, we can instead require above that each O,, € B,, instead of 7,,, for
k=1,2,...,n. With this interpretation of the elements of B it is easy to see that
each projection map is continuous. The next theorem clarifies this but also states
that the product topology is the weakest topology [],.; Xo which makes all of the

projection maps continuous.

Theorem 4.2.13. Let (X,,7,) be a topological space for each o € I, where I is

some index set. Let T be the product topology on [[,c; Xo- Then, for each v € I, the

ael
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projection map 7 : [[,c; Xo — X, is continuous. Further, if 7y is another topology

on [[,er Xa for which each projection map m : [[,c; Xa — X, is continuous, then

acl
7 C 79.

Proof. From the discussion immediately preceding the statement of the theorem,
it is clear that m, is continuous for each v € I. Thus, it remains to prove that
the product topology, 7, is the weakest topology which makes all of the projection

maps continuous. Let 7y be another topology on [[,.; X such that 7, is continuous

acl
for all v € I. Let O be a basic open set in 7. Then there exists n € Z, and
ap,Qa, ..., a, € I such that

O =7,1(04,) N7 (On,) N - N7 (On,)

Qn

where O,, € 7, forall k =1,2,...,n. Since 7,, is continuous with respect to 7y,
we have that 7' (O,,) € 7o for all k = 1,2,...,n. Thus,

O =7,1(04)N w;j(OaQ) N---N7, (0n,) €T

Qn

since it is a finite intersection of elements from 73. Hence, 7 C 7y and so 7 is weaker

than 7. O

The next theorem gives us a way to prove that a function from a topological space
into a space equipped with the product topology is continuous by simply checking

whether the projection maps composed with the function are continuous.

Theorem 4.2.14. Let (X, 7) be a topological space and let (Y,,o0,) be a topological
space for each o € I, where I is some index set. Let o be the product topology on
[loe; Yo andlet f: (X, 7) = ([, Yo 0). If mao f:(X,7) = (Ya,04) is continuous,
for alla eI, then f: (X,7) = (I, Ya,0) is continuous.

Proof. Suppose m, o f 1 (X,7) = (Ya, Ta) is continuous, for all « € I. Let O be a
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basic open set in 0. Then there exists n € Z,, ay,0,...,a, € I, and O,, € 0,,
such that

O = Tr(;ll(oal) m 7T0721(Oa2) m U m Tr;j(oan)
Since m,, o f is continuous, we have that (m,, o f)"1(O,,) € T forall k = 1,2,... n.
Then,

f_l(O) = f_l (77_1(0&1) N 7T(;21(Oa2) M---N 71-(;7}(00’”))
=7 (10, (0ay)) N f 7 (72, (Oag)) V-0 7 (72, (Oa))
(T © f)il(Oal) N (Tay © f)71<0a2) NN (T, © f)il(Oan)

since it is a finite intersection of sets from 7. Thus, f is continuous. O

An application of the above theorem is the following theorem.

Theorem 4.2.15. Let (X, 1) be a topological space and let f : (X,7) = R and g :
(X, 7) = R, where R is equipped with the usual topology. If [ and g are continuous,

then f + g is continuous.

Proof. Define h : (X,7) = R x R by h(z) = (f(z),g9(x)), where R x R has the
product topology (which is equal to the usual topology). Let m be the projection
map onto the first coordinate of R x R and my be the projection map onto the second
coordinate. Then m;0h = f, which is continuous, and myoh = g, which is continuous.
Hence, by Theorem 4.2.15, the function A is continuous. Now, consider the function
+:R xR — R where +(a,b) = a+ b. While it looks a bit different, the fact that +
is continuous is equivalent to the fact the sum of two convergent sequences converges
to the sum of their limits from calculus class. If this is unsatisfactory, let B(z,r) be
an open ball in R, for some x € R and r > 0. Then +~(B(z,r)) is the open region

in the zy-plane strictly above the line y = —x + 2z — r and strictly below the line
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y = —x + z + r, which is clearly an open set. Then, by Exercise 77, the function

f -+ g =+ o h is continuous. =

Corollary 4.2.16. Let n € Z,, ay,a,...,a0 € R, and f; : (X,7) = R be contin-
uous for each i = 1,2,... . n, where (X, T) is a topological space and R is equipped

with the usual topology. Then oy fi + asfo + -+ - + ap fr s continuous.

Proof. Tt suffices to prove that if f : (X,7) — R is continuous and o € R, then af
is continuous, where (af)(x) = af(x), for all x € X. Once this is complete, we can
simply appeal to Theorem 4.2.15. If we define ¢ : R — R by g(x) = ax, then g is
obviously continuous as ¢ is just a line from our high school classes. If we would

rather use the e-0 definition of continuous functions, then, for any ¢ > 0, simply let

0= Ia\ﬁ Then, we have that af = go f and so, by Exercise 7?7, the function af is
continuous. [

Definition 4.2.17. Let (X, 7) be a topological space. We say a set A C X is dense
in X if A= X.

If you have taken a course in real analysis, then you're aware that Q = R. Hence,
we would say Q is dense in R. The next exercise gives us a useful way to check if a

subset is dense.

Exercise 4.2.18. Let (X, 7) be a topological space and let A be a subset of X. The
set A is dense in X if and only if, for every nonempty O € 7, we have AN O # (.

Theorem 4.2.19. Let (X, 1) be a topological space and let o be the usual topology
on R. Suppose [ : (X,7) = (R,0) and g : (X,7) = (R,0) are continuous. Let
A={x e X|f(x)=g(x)}. If A is dense in X, then f(x) = g(z) for all x € X.

Proof. The reader is walked through the proof in the following exercise. O

Exercise 4.2.20. Prove Theorem 4.2.19. Hint: Let h : (X,7) — (R,0), where
h(z) = f(z) — g(x). From Corollary 4.2.16, we know h is continuous. Now, use the
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fact that h is continuous to prove A is closed. Now, since A is closed, what does that
tell us about the relationship between A and A? You should now be able to conclude
that A = X which means f(x) = g(z) for all x € X.

The above theorem tells us that for any continuous function f from a general topo-
logical space (X, 7) into R, with the usual topology, knowing what f does on a dense
subset of X completely determines what f does on all of X. This fact has a variety
of applications. Suppose, for example, that we have a continuous function f we are
searching for but all we know is what it does on a dense subset of X. If we can find a
continuous function g on X which agrees with f on that dense subset, then we must

have that f = g.

Suppose instead, we are in a setting where we have the function f on hand (suppose
it’s a very complicated function with no nice rule to tell us where to send each element
of the domain) but it would be very tedious to send a full description of the function
to someone else (perhaps over the internet with multiple levels of security). We could,
instead, describe what the function does on any dense subset of the domain, of our
choosing, and have the person on the other side find a function g agreeing with f on
that dense subset (assuming we have an efficient way to do so). The person on the

other side then knows the function g that they found is actually f!

As was mentioned at the end of Chapter 2, there is no metric we can define on R®
so that a sequence (f,)°2, in R® converges with respect to the metric if and only
if the sequence converges pointwise (although we still have not seen why). There
is, however, a topology we can define on R® which does this and it is precisely the

product topology, as the next example shows.

Example 4.2.21. For the sake of clarity, in a real analysis course, we say a sequence
of functions (f,)2, converges pointwise to a function f if, for all x € R, f,,(z) —
f(z). To be precise, f, — f pointwise if, for all x € R and all ¢ > 0, there exists
N € Z. such that for all n > N, we have that |f,(z) — f(z)| < e. Now, let ()5,
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be a sequence in R® equipped with the product topology 7 and f € RR. We claim
that f, = f if and only if f, — f pointwise.

To see this, first suppose f, — f. Let 2 € R and € > 0. Let d denote the usual
metric on R. Then U = 7, '(By(f(x),¢)) is a basic open set in the product topology
so there exists N € Z, such that, for all n > N, we have that f,, € 7, (Ba(f(x),¢€)).
That is, m.(fn) € Ba(f(x),€), and so, |f.(z) — f(z)| < e. Hence, f,(x) — f(x). This
holds for all x € R and so f,, — f pointwise.

Now, suppose f, — f pointwise. Let U be a basic open neighborhood of f. Then
there exists k € Z, and zy,29,..., %k, Y1,Y2,-..,Yx € R as well as e1,€9,...,¢; €
(0, 00) such that

U=, (Ba(yr, &) N, (Balya, €2)) M-+ Ny (Baly, ). (4.1)

Since f € U, we know that |f(z;) —yi| < ¢, for all ¢ = 1,2,..., k. Now, for
i=1,2,...,k,let v, = ¢ — | f(z;) — y;| and define

Up = m, (Ba(f(21), 1)) N7y, (Ba(f (22),792)) 0+ N (Balf (), )

Then f € Uy C U. For each i = 1,2,...,k, since f, — f pointwise, there exists
N; € Zy such that, for all n > N;, we have that |f,(x;) — f(x;)] < 7. Let N =
max{ Ny, No, ..., Ny}. Then, for n > N, we have that |f,(z;) — f(z;)] < v, for all
i=1,2,...,kand so f, € Uy C U. Hence, f, = f.

If we equip R® with the box topology 7 rather than the product topology, then
pointwise convergence does not imply convergence with respect to 7. It is worth
reexamining where the proof above breaks down. Note that if we are using the box
topology, then in Equation (4.1), we would have to take the set U to be an infinite
intersection of sets. If we then look at how we defined NV later on, we could not define

N to be the maximum of all the N; as there would now be infinitely many of them.
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This is one argument as to why we say, for infinite products, the box topology is "too

strong." Having coordinate-wise convergence does not guarantee overall convergence.

4.3 The Weak Topology

We saw in the last section that the product topology 7 defined on the product of
topological spaces (X, 74), a € I, is the weakest topology which makes all of the
projection maps continuous. We also saw that we can construct a base for the

product topology with sets of the form
U=7,(0a,) N7 (Oa,) N N7 (On).

for n € Zy and O,, € 74, for ay,...,a, € I. Hence, the sets of the form 7'(0,)
form a subbase for the product topology. So, in retrospect, we could have simply

defined the product topology to be the topology generated by this subbase.

There is nothing preventing us from generalizing this situation to other functions
and other topological spaces besides the product spaces. This is the idea behind the
weak topology.

Definition 4.3.1. Let X be a set, I be an index set, and (X,,7,) be topological
spaces for all @ € I. Further, suppose f, : X — X, for all « € I. Let F = {f.|a €
I} and let C = {f,;'(Os)|a € I and O, € 7,}. Then C is a subbase for a topology
on X called the weak topology on X generated by F. By construction, it is the

weakest topology on X which makes all the functions in F continuous.

Quite often, the topological spaces (X,,7,) are all the same topological space, in
which case, the definition above isn’t quite so technical looking. For example, say
we have a set X and a collection of functions F, where each f € F is of the form

f: X — R, where R is equipped with the usual topology 7. Then the weak topology
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on X is the topology with subbase {f~1(0) : O € Tand f € F} and it is the weakest
topology which makes all the functions in F continuous. The following example

illustrates this scenario.

Example 4.3.2. Let X = C([0,1]), where C([0,1]) is the set of continuous real-
valued functions on [0, 1]. Recall that C(]0,1]) € R®U. Let I = {[a,0]|0 < a < b <
1}. Then, for each [a,b] € I, define ey : X — R by epy(f) = fabf(t)dt, for all
f € X, where we equip R with the usual topology. Now, let F = {e[, 4| [a,b] € I}.
Then F generates a topology on X and it is the weakest topology which makes every

element of F continuous.

If (X,7) and (Y, 0) are topological spaces and o is the weak topology induced by a
collection of maps F = {f,|a € I}, where f, : Y — (Za,na), where (Z,,n,) is a
topological space for each a € I, then the next theorem tells us how to check if a

function f: (X, 7) — (Y, 0) is continuous.

Theorem 4.3.3. Let (X, 7) and (Y, 0) be topological spaces and o be the weak topol-
ogy induced by a collection of maps F = { fo|a € I}, where fo 1Y — (Za,na), where
(ZuyNa) 1s a topological space for each o € I. We then have that f: (X, 7) — (Y, 0)

is continuous if and only if foo f (X, 7) = (Za,Na) s continuous.

Proof. Let f be continuous and let o« € I. Since o is the weakest topology making

each f, continuous, f, is continuous. Hence, f, o f is continuous.

For the other direction, suppose f, o f : (X,7) — (Za, 1) is continuous, for all
a € I. Let O be a basic open set in Y. Then there exists n € Z,, a1, as, o, € I and
Oa, € N, for k=1,2,...,n, such that

0= fa_ll(Oal) N f(;gl(OaQ) AEERD fa_,,Ll(Oan)'

For each k = 1,2,...,n, since O,, € 0,, and f,, o f is continuous, we have that
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(for, © f)"1(O,,) € T. Then,

f_l(O) = f_l (fo?ll(Ooq) N fcx_zl(OOCQ) AERRN fojnl(oan))
= (far © ) 7H(0a) N (faz © /)7 (Oaz) O N (fa © F) 7 (Oa,)

eT

since it is a finite intersection of elements from 7. Hence, f is continuous. n

If we are again in the scenario where all of the topological spaces (Z,,1,) are the
same, say Z, = R and 7, = 7, where 7 is the usual topology on R. Then, if we have
a collection of functions F = {f, : Y — (R,n) : @ € I} and we equip Y with the
weak topology induced by F, to check if a function f : (X, 7) — (Y, o) is continuous,
we simply have to check if f, o f: (X, 7) — (R,n) is continuous for all « € I.

If the set F of functions we are using to generate a weak topology is small, then
it will produce a weaker topology than a larger set of functions. To be precise, if
F1 C Fy, then the topology induced by F; will be weaker than the topology induced
by F» (checking this fact is a following exercise). Hence, we have to be careful about
what we include and exclude from F. We don’t want to include so many functions
that we produce too strong of a topology but we also don’t want to exclude so many
so that the topology does not have desirable properties. One way to ensure the
topology generated has some of the properties we would like it to have is to require
that it seperates points. We will see in a later section the properties this requirement
produces. We will define what we mean by F separating points after we give the

mentioned exercise.

Exercise 4.3.4. Let X be a set and let (Y, o) be a topological space. Let F; and F
be collections of functions f : X — (Y, o). Let 7 be the weak topology on X induced
by F; and 7 be the weak topology on X induced by F3. Prove that if F; C Fs,

then 7 C 7.
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Definition 4.3.5. Let F = {f, : X — Y,|a € I}. We say F seperates points in
X if, for any 1, xs € X, where x1 # x5, there exists a € I such that f,(x1) # fo(x2).

Roughly speaking, a collection of functions F seperates points in X if, given x1,z9 €
X with z; # x5, at least one member of F recognizes that x; and zs are distinct
elements of X. One consequence of F not seperating points can be seen in the

following exercise.

Exercise 4.3.6. Let X be a set and let F = {f, : X — (Y,0,) : @ € I} and equip
X with the weak topology 7 induced by F. Suppose F does not seperate points.
That is, there exists x1, 29 € X such that f,(x1) = fo(z2) for all @ € I. Prove that
a set U is an open neighborhood of z; if and only if U is an open neighborhood of

Zo.

The above Exercise shows that if F does not recognize distinct points, then the

topology it generates will not recognize distinct points either.

Example 4.3.7. (i) Let (X,d) be a metric space and, for each z € X, define
fr: X =2 Rby fo(y) =d(z,y), for all y € X. Now, let F = {f,|z € X}. Then
the topology induced by F on X is precisely the topology on X induced by the
metric d. Further, F seperates points since, given y1,yo € X, where y; # 1o,
we have that f,, (y1) =0, while f,, (y2) # 0.

(ii) Consider the set X = R” which, if you recall, is the set of all real-valued
sequences (x,)%,. Define e, : X — R, where R has the usual topology, by

n=1"

er((2,)22,) = xy, for all (z,)%°, € X. Now, let F = {ex|k € Z,}. Then F
generates a topology on X. Further, F seperates points. To see this, suppose we
have two sequences (z,); and (y,)22, in X which are not equal. Then there

must exist m € Z, such that x,, # y,,. Hence, €, ((2,)5%1) # em((yn)2,).

(iii) In Example 4.3.2 from earlier, the set F given there would seperate points

although a proof of this would require some knowledge of analysis which we do
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not assume in these notes. If we modify Example 4.3.2 and suppose instead
that X is the set of Riemann integrable real-valued functions on [0, 1], then we
still have that X C RI%Y. Tet I = {[a,b]|0 < a < b < 1}. Then, for each
la,b] € I, define ey : X — R by ey (f) = [ f(t)dt, for all f € X. Now,
let F = {epu|la,b] € I}. Then F generates a topology on X which does not
seperate points. To see this, simply consider the functions f; and f5 on [0, 1],
where fi(3) = 1 and fi(z) = 0, if  # 3, while fo(5) = 2 and fo(x) = 0, if
x # 5. Then fi # fo but e p(f1) = ey f2) for all [a,b] € I.

Exercise 4.3.8. (i) Let X = R® and, for each x € X, define e, : X — R by
e.(f) = f(z). Let F ={e,|z € R}. Prove that F seperates points of X.

(ii) Let X = C(R) and, for each r € Q, define e, : X — R by e,(f) = f(r). Let
F = {e;|r € Q}. Prove that F seperates points of X. Hint: Use Theorem
4.2.19 and the fact that Q = R.

4.4 The Quotient Topology

If we have maps from a set to some topological spaces, then the weak topology
gives us a way to use the topologies of the codomains of the functions to define a
topology on the domain. The quotient topology does the opposite. Given an onto
map f : X — Y, the quotient topology gives us a way to define a topology on Y
using the topology on X.

Definition 4.4.1. Let (X, 7) be a topological space and let Y be a set. Further,
suppose f: (X,7) = Y is onto. Let

7 ={0CY|f(0) e}

Then 74 is a topology on Y called the quotient topology induced on Y by f. The
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topological space (Y, 7¢) is called a quotient space of X and the function f is called

a quotient map.

Of course, we still have to verify that, indeed, 7 is actually a topology on Y, which

we do in the next proposition.

Proposition 4.4.2. Let (X, 7) be a topological space and let Y be a set. Further,
suppose f: (X, 7) = Y is onto. Let

7 ={0CY|f(0) e}

Then ¢ 1s a topology on Y. Further, 7; is the strongest topology which makes f
continuous. That is, if o is a topology on'Y and f : (X,7) — (Y, 0) is continuous,

then o C 5.

Proof. First, we want to prove 77 is a topology on Y. Well, () € 7 since f~1(() =
0 erand Y € 74 since f71(Y) = X € 7. Now, let O; € 74 for all i € I. Then
f~YO;) € 7, for all i € I. Then we have that

o (U 0i> = Uf‘l(Oi) er

and so Uijc;O; € 7. Hence, 75 is closed under arbitrary unions. Next, let n € Z,
and let Oy, 0y, ...,0,, € 75. Then f~1(04), f1(Os),..., [1(O,) € T and so

n n
(o) -Nrones
i=1 i=1
and so ML, 0; € 7. Hence, 7 is closed under finite intersections and thus, 7; is a

topology on Y.

Now, to show 7 is the strongest topology on Y which makes f continuous, suppose

o is a topology on Y such that f: (X,7) — (Y, 0) is continuous. Let O € o. Since
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f:(X,7) = (Y,0) is cointinuous, we have that f~1(O) € 7. This then implies that

O € 74. Hence, 0 C 74 and so 7y is stronger than o. [

At this stage, the reader might be wondering why we call (Y, 7¢) a "quotient space"

and 7 the "quotient topology" as this probably makes the reader think of quotient
spaces in an abstract algebra class or, possibly, quotient spaces in analysis. The

reason for this is important so we will explain it in detail.

Suppose (X, 7) is a topological space, Y is a set, and f : (X,7) — Y is onto.
Now, define the quotient topology 7; on Y. Next, define a relation ~; on X by
x1 ~f T2 < f(x1) = f(x2). Then ~y is an equivalence relation on X (checking
this is a following exercise). Since ~y is an equivalence relation, we can discuss
the equivalence classes for ~; of X. Let X/~; be the set of all equivalence classes
of X. That is, X/~; = {[z]|x € X} and recall that the equivalence classes of X
partition X into disjoint sets (that is, the equivalence classes are disjoint and the
union of all equivalence classes equals X). Next, define a topology 7/~; on X/~; by
O € 7/~; & Upgleolr] € 7. We will check in a following proposition that 7/~; is
in fact a topology on X/~;. With this construction, we then have that (X/~;,7/~)
is homeomorphic to (Y, 7¢) so we can (and do) view (Y, 7¢) as the quotient space

(X/~s,7/~;). Of course, we have several things to now check.

Exercise 4.4.3. Let f : X — Y and define a relation ~;y on X by z; ~; 25 &

f(x1) = f(x2). Prove ~ is an equivalence relation on X.

Proposition 4.4.4. Let (X, 7) be a topological space, Y a set, and f: (X,7) =Y
be onto. Define X/~; = {[z]|z € X}, where ~¢ is the equivalence relation given in

Ezercise 4.4.3. Define 7/~; to be the collection of subsets O of X/~ where

O€c/se | Jl2ler

[z]€O

Then ™/~; is a topology on X/~;.
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Proof. First, ) € 7/~ since Upeplz] = 0 € 7. Also, X/~; € 7/~; since Upjex(z] =
Xer.

Next, let O; € 7/~ for all i € I. Then Upco,[x] € 7, for all i € 1. Then

U kI=U| Ull]er

[SE]EUiejoi el [.Z’}EOZ
since it is an arbitrary union of elements of 7. Hence, U;c;0; € 7/~;.

Finally, let n € Z; and 01,0,...,0, € 7/~;. Then Upcp,|x] € 7, for all i =
1,2,...,n and so
U = UMK]er
[I]Eﬂ;;loi =1 [ﬂGOl

since it is a finite intersection of elements from 7. Hence, N, 0; € 7/~;.

Thus, 7/~; is a topology on X/~;. O

Lastly, we have to check that we do, in fact, get the homeomorphism mentioned

earlier between (X/~;,7/~;) and (Y, 7y).

Theorem 4.4.5. Let (X, 7) be a topological space, Y a set, and f : (X,7) = Y be
onto. Then (X/~;,7/~¢) is homeomorphic to (Y, 7y).

Proof. Define h: (Y,7;) = (X/~;,7/~;) by h(y) = f~(y), for all y € Y. Since [ is
onto, h is well-defined. Clearly, h is a bijection, so it suffices to show that h and h~!
are continuous. Let’s first show h is continuous. To this end, let O € 7/~;. We want
to show h~1(O) € 1;. By the definition of 7y, it suffices to show f~*(h71(0)) € 7.
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Recall by the definition of 7/~; that we have Uj,colx] € 7. Then,

h'(0)={yeY|f'(y) €O}
= {f(z0)| [zo] € O}

= flxo) |z € | []

[z]€eO

= Ul

[z]€O
and so, f~Hh71(0)) = f7H(f(Ueolz])) = Upeolz] € 7, and so h=*(O0) € 4.

Now, to show h~! is continuous, let O € 74. Then we know, by the definition of 7y,
that f~1(0) € 7. We want to show that h(O) € 7/~;, Le., that Uyeno)[z] € 7. Note
that h(0) = {f~'(y)|y € O}, so

U k=Urw=r"0er

[z]eh(O) yeO

Therefore, h(O) € 7/~; and hence h™! is continuous. Therefore, i is a homeomor-
phism between (Y, 77) and (X/~;, 7/~;). O

Suppose we have f : (X, 7) — (Y, 0) which is onto and continuous. Proposition 4.4.2
then tells us that ¢ C 74. The next proposition gives conditions for o = 7 but we

first need a couple of definitions.

Definition 4.4.6. Let f : (X,7) — (Y,0), where (X, 7) and (Y, 0) are topological
spaces. If f(O) € o for all O € 7, then we say the function f is open. If f(C) is

closed for all closed sets C, then we say the function f is closed.

Thus, a function is open if it maps open sets to open sets and is closed if it maps

closed sets to closed sets. We are now ready for the above mentioned proposition.



34 CHAPTER 4. NEW TOPOLOGIES FROM OLD

Proposition 4.4.7. Let (X,7) and (Y,0) be topological spaces and suppose f :
(X,7) = (Y,0) is continuous. If f is open or closed, then o = T, where Ty is

the quotient topology on Y induced by f.

Proof. We already know, by Proposition 4.4.2, that o C 74.First, suppose f is open.
Let O € 74. By construction of 7;, we have that f~1(O) € 7 and, since [ is
open, O = f(f~1(0) € o and so o = 7. Now, suppose f is closed. Let O € 7.
By construction of 7;, we have that f~'(0O) € 7. Hence, f~'(0)° is closed with
respect to 7. Since f is closed, f(f~1(0)¢) is closed with respect to o and, since
0° = f(f~1(0)°), we have that O° is closed with respect to o. That is, O € 0. [

Note that when we combine Proposition 4.4.7 with Theorem 4.4.5, we get the fol-

lowing corollary.

Corollary 4.4.8. Let (X, 1) and (Y,0) be topological spaces. If f : (X, 1) — (Y, 0)
is onto, continuous, and either open or closed, then (Y o) is homeomorphic to

(X/~ss /i)
Proof. The proof follows immediately from Proposition 4.4.7 and Theorem 4.4.5 [J

Admittedly, this section has been rather technical. The diligent reader will hopefully

find the next list of examples well worth the hard work.

Example 4.4.9. (i) Consider X = [0, 27] with the usual topology 7 (technically,
T = 1|[,2x), Where 7 is the usual topology on R) and Y = S; with the usual
topology o. Define f : (X,7) — (Y,0) by f(t) = (cos(¢),sin(¢)). Then f
is onto, continuous, and open. Hence, by Corollary 4.4.8, ([027]/~, 7/~;) is
homeomorphic to (S1,0). Now, if we think about the elements of [0:27]/~, we
will see that

27/, = {{t}|0 <t <27} U {{0,27}}.
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So, [0.27]/~, is essentially [0, 27] except that we make no distinction between 0
and 27. Further, the topology 7/~ is essentially 7 except that it also makes
no distinction between 0 and 27. Hence, we get that S is homeomorphic to

[0, 27] as long as we "identify" the endpoints 0 and 27.

First note that S; x [0,27] is a cylinder in R® with radius 1 and height 27.
Equip the cylinder with the usual topology o. Now, define f : [0, 27| x [0, 27| —
S1 % [0,27] by f(t,s) = (cos (t),sin (t),s) where we equip [0, 27] x [0, 27] with
the usual topology 7. Then f is continuous, onto, and open so S; x [0, 27] is a

quotient space of [0, 27] x [0, 27] and

(0270027 7/ y) 2 (S x [0, 27, 0).
Further, the equivalence classes of the quotient space are given by
o:2n]x[0.27]/ . = {{(¢,$)}| 0 <t <27, s € [0,27] }U{{(0, s), (27, s)}| s € [0, 27]} .

Hence, the elements of [0:27]x[0,27]/ . are precisely the elements of [0, 27] x [0, 27]
except we identify points of the form (0, s) to points of the form (27, s), for all
s € [0,2x]. Graphically, we picture [0, 27] x [0, 27| as a square. If we then make
the identifications mentioned, it is identifying the left edge of the square to the
right edge, thus creating a cylinder.

Let us now avoid the technical aspects of these constructions and focus on iden-
tifying different edges of the square [0, 27] x [0, 27| with each other. First, iden-
tify the left edge of the square with the right edge, as we did in the above exam-
ple, to form a cylinder. Then identify the bottom edge with the top edge so that
points of the form (¢,0) are identified with points of the form (¢,27). We then
bend the cylinder around to form a donut shape, called the torus. The torus
is often denoted by T or S; x Sy since the quotient map for this construction
is f:1]0,27] x [0,27] — Sy x Sy, where f(t,s) = (cos (t),sin (t), cos (s),sin (s)).
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(iv) Suppose instead we start with the square [0, 27| x [0, 27] and identify the bot-
tom edge with the top edge but we twist the bottom edge before doing so.
Technically, we are identifying points of the form (¢,0) with points of the form
(2m — t,2m). We then end up with a topological object called the M&bius
strip.

(v) Now, lets start with the square [0, 27| x [0, 2], identify the left edge with the
right edge to form a cylinder. We will then identify the top edge with the
bottom edge but twist the bottom edge before doing so. This then creates
an object called the Klein bottle. It is easiest to picture by imagining, once
we have formed the cylinder, picking up the bottom from it’s circular edge,
stretching it out, inserting it through the side of the cylinder, up through the
top of the cylinder, and then matching it to the top circle by curling the sides
down. Unfortunately, this interpretation of the Klein bottle is misleading as
it does not actually intersect itself like this. Just like the torus, the image of
the quotient map is actually a subset of R* so the Klein bottle is avoiding this

self-intersection by using a fourth dimension.

(vi) Lastly, as you can probably guess, take the square [0,27] x [0, 27| once more,
pick up the left edge and twist it, before identifying it with the right edge.
Then, pick up the bottom edge and twist it, before identifying it with the top
edge. The resulting object is called the projective plane (or real projective
plane) and is denoted most often by RP?. This is a rather difficult object to try
to picture. Part of the issue is that, like the Klein bottle, it cannot be properly
thought of as a subset of R3.

Exercise 4.4.10. Give quotient maps for the Mobius strip, Klein bottle, and pro-

jective plane.
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