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6 CHAPTER 3. INTRODUCTION TO TOPOLOGICAL SPACES

In the last chapter we saw that one very important reason to concern ourselves

with topological spaces is to introduce an analytic structure to more general sets of

objects or to change the analytic structure on sets which already have one. With

this framework, one could say that to study topology is to study analysis in its most

abstract setting. Certainly, many mathematicians take this point of view, especially

those who primarily work in analysis or analysis adjacent �elds. It should be stated

though that another perspective is that topology is an abstraction of geometry. Of

course, even with our very limited understanding of topology up to this point, we

can see some overlap as we have already talked about distance between two points,

open disks, open squares, the Cartesian plane, etc. Nevertheless, the entirety of this

perspective is probably not clear to the reader but we will attempt to address it in

more detail as we progress through these notes.

To continue with our discussion from the last chapter, we found a way to address

analytic properties without having to mention a metric but rather open sets. We

decided that if simply designate which subsets are open, then we can de�ne certain

analytic properties to sequences and functions. If we look back at the de�nition of

a metric, we didn't want any function d : X × X → R to be a metric on X. We

wanted d to satisfy certain properties we would expect distance to satisfy. The same

is true in de�ning our open sets (which, in so doing, de�nes a topology). We want

the open sets to satisfy certain properties that we would expect open sets to satisfy.

Admittedly, these properties are not as obvious as the de�ning properties of metrics

but, after much debate and trial and error, these are the properties for which we

have decided to be the most appropriate.

3.1 De�nitions and Examples

De�nition 3.1.1. Let X be a nonempty set. We say a set τ ⊆ P(X) is a topology

on X if it satis�es the following properties:
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(i) ∅, X ∈ τ

(ii) τ is closed under the formation of arbitrary unions. That is, if I is an index set

and Ai ∈ τ , for all i ∈ I, then ∪i∈IAi ∈ τ , and

(iii) τ is closed under the formation of �nite intersections. That is, if n ∈ Z+, and

A1, A2, . . . , An ∈ τ , then ∩n
i=1Ai ∈ τ .

The elements of τ are called open sets. The ordered pair (X, τ) is called a topo-

logical space. If x ∈ X and U ∈ τ such that x ∈ U then we call U an open

neighborhood of x.

As I mentioned, it is not completely clear at this point, why we require our open

sets to have these de�ning properties. It is worth recalling though that in a metric

space, our open sets satisfy these properties. So, at the very least, these properties

should not be surprising.

Example 3.1.2. (i) Let X be a nonempty set and let τ = {∅, X}. Then τ is a

topology on X called the trivial topology or indiscrete topology. Note

here that the only open sets are ∅ and X.

(ii) Let X be a nonempty set and let τ = P(X). Then τ is a topology on X

called the discrete topology. Every set here is open. When we say a �eld

of mathematics is "discrete" or, when we study Discrete Mathematics, we're

studying mathematical objects without any topological structure. Imposing

the discrete topology on a set X essentially gives it no topological structure

since de�ning every set to be open essentially renders the topological structure

useless.

(iii) Let (X, d) be a metric space and let τ be the set of all open sets as they were

de�ned in Chapter 2. Then, from a theorem from Chapter 2, τ is a topology on

X called the metric topology on X induced by d. If (X, τ) is a topological
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space and their exists a metric d such that the topology induced by d equals τ ,

then we say the topological space (X, τ) is metrizable.

(iv) Consider R with the usual metric d and let τ be the metric induced by d. Then

τ is called the usual topology on R. The elements of τ are precisely the

open sets we discuss in high school and our calculus classes. For example, the

intervals of the form (a, b) are open as is any union of intervals of this form.

Intervals of the form (a, b], [a, b), and [a, b] are not open.

(v) Consider the set R and de�ne τ = {(a,∞) : a ∈ R} ∪ {R, ∅}. Then τ is a

topology on R and it's called the right ray topology. It is an exercise below

to prove τ is a topology.

(vi) Let X be a nonempty set and de�ne τ to be the collection of all subsets of X

whose complement is �nite. That is, A ∈ τ ⇔ Ac is �nite. Then τ is a topology

on X called the �nite complement topology.It is an exercise below to prove

τ is a topology. Note that if X is a �nite set then τ equals the discrete topology

on X.

(vii) Let X be a nonempty set and �x an x0 ∈ X. De�ne τx0 = {A ∈ P(X) :

x0 ∈ A} ∪ {∅}. Then τx0 is a topology on X called the distinguished point

topology. It is a following exercise to prove τx0 is a topology.

Exercise 3.1.3. (i) Prove the right ray topology is a topology on R.

(ii) Let X be an in�nite set. Prove the �nite complement topology is a topology

on X.

(iii) LetX be a nonempty set and let x0 ∈ X. Prove that the distinguished topology,

τx0 , is a topology on X.

It is often easier to de�ne a topology by de�ning the sets which make up all of the

open sets. For example, in a metric space (X, d), we saw that every open set can be
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written as the union of sets of the form Bd(x, r) for some x ∈ X and r > 0. We also

used the terminology that the collection of all sets of the form Bd(x, r) is a "base for

the topology on X" and we called the sets of the form Bd(x, r) "basic open sets."

We carry these concepts and terminology to general topological spaces.

De�nition 3.1.4. Let (X, τ) be a topological space and let B ⊆ τ . We say B forms

a base for the topology if every element of τ can be written as a union of elements

of B. We then call the elements of B basic open sets. If x ∈ X and U ∈ B such

that x ∈ U , then we call U a basic open neighborhood of x.

Example 3.1.5. (i) As discussed, if (X, d) is a metric space and B is the collection

of all sets of the form Bd(x, r), where x ∈ X and r > 0, then B forms a base

for (X, τ) where τ is the metric topology on X induced by d.

(ii) Consider R with the usual topology and let B = {(a, b) : a, b ∈ R and a < b}.
Then B forms a base for R. Note that an empty union of sets equals the empty

set.

Proposition 3.1.6. Let (X, τ) be a topological space and suppose B is a base for τ .

Let O be an open neighborhood of x. Then there exists U ∈ B such that x ∈ U ⊆ O.

Proof. Let x ∈ X and let O be an open neighborhood of x. Since O ∈ τ and B is

a base for τ , there exists an index set I and Bi ∈ B such that O = ∪i∈IBi. Since

x ∈ O, we have that x ∈ Bi0 for some i0 ∈ I. Let U = Bi0 . Then x ∈ U ⊆ O.

Now, suppose we have a set X (without a topology) and we would like to de�ne a

topology by de�ning the basic open sets. One might be tempted to think that it is

enough to de�ne the sets in B0 and then de�ne the elements of τ0 to be the collection

of all unions of elements from B0. But this will not always make τ0 a topology. We

need the elements of B0 to satisfy two properties as the next theorem shows.

Theorem 3.1.7. Let X be a nonempty set (without a topology) and let B be a family

of subsets of X satisfying the properties:
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(i) For every x ∈ X there exists U ∈ B such that x ∈ U , and

(ii) For every U1, U2 ∈ B and every x ∈ U1 ∩ U2 there exists U3 ∈ B such that

x ∈ U3 ⊆ U1 ∩ U2.

Now, let τ be the collection of subsets of X consisting of all unions of elements of B.
Then τ is a topology on X and B is a base for τ .

Proof. First, ∅ ∈ τ since we can write it as an empty union. Further, by property

(i), for all x ∈ X, there exists Ux ∈ B such that x ∈ Ux. Then, X = ∪x∈XUx ∈ τ .

Now, let I be an index set and suppose Oi ∈ τ , for all i ∈ I. For each i ∈ I, there

exists an index set Ki such that Oi = ∪k∈Ki
Bk,i. Then,⋃

i∈I

Oi =
⋃
i∈I

⋃
k∈Ki

Bk,i ∈ τ,

since it is an arbitrary union of elements from B. Hence, τ is closed under arbitrary

unions.

Next, we will show that the intersection of two elements of τ is an element of τ . To

this end, let O1, O2 ∈ τ . Let x ∈ O1 ∩ O2. Since x ∈ O1, which can be written as

a union of elements from B, there exists B1 ∈ B such that x ∈ B ⊆ O1. Similarly,

there exists B2 ∈ B such that x ∈ B2 ⊆ O2. By property (ii), we then have that

there exists B3 ∈ B such that x ∈ B3 ⊆ B1 ∩ B2. Thus, for every x ∈ O1 ∩ O2, we

can �nd Bx ∈ B such that x ∈ Bx ⊆ O1 ∩O2. Thus,

O1 ∩O2 = ∪x∈O1∩O2Bx ∈ τ.

We will now use induction to show that any �nite intersection of elements from τ

is an element of τ . Let n ∈ Z+. The case when n = 1 is trivial and we proved the

n = 2 case above. Suppose that for some k ∈ Z+, we have that if O1, O2, . . . , Ok ∈ τ ,
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then ∩k
i=1Oi ∈ τ . Let O1, O2, . . . , Ok+1 ∈ τ . By hypothesis, we have that ∩k

i=1Oi ∈ τ

and, since Ok+1 ∈ τ , by the n = 2 case, we have that

∩k+1
i=1Oi =

(
∩k

i=1Oi

)
∩Ok+1 ∈ τ.

Thus, τ is closed under �nite intersections.

De�nition 3.1.8. If X is a set and B is a collection of subsets of X satisfying

properties (i) and (ii) above then the topology τ constructed above is called the

topology on X generated by the base B.

Note that if (X, τ) is a topological space and β is a base for τ , then β satis�es

properties (i) and (ii) of Theorem 3.1.7. It follows directly from Proposition 3.1.6.

Example 3.1.9. (i) Consider the set R and let B be the set of all intervals of the

form [a, b), where a, b ∈ R and a < b. Note that B is not itself a topology on R
as, for example, [1, 2), [3, 4) ∈ B but [1, 2) ∪ [3, 4) /∈ B. However, we can easily

see that B satis�es properties (i) and (ii) of Theorem 3.1.7. Indeed, for any

x ∈ R, x ∈ [x, x + 1) ∈ B so property (i) is satis�ed. Given [a, b), [c, d) ∈ B, if
[a, b)∩[c, d) = ∅ then there is nothing to prove. Suppose [a, b)∩[c, d) ̸= ∅ and let

x ∈ [a, b) ∩ [c, d). Let m = min{b, d}. Then [x,m) ⊆ [a, b) and [x,m) ⊆ [c, d),

thus [x,m) ∈ B and x ∈ [x,m) ⊆ [a, b) ∩ [c, d). Thus, if we de�ne τ to be the

collection of all subsets of R consisting of unions of sets from B, then τ is a

topology on R and B is a base for τ . The topology τ is called the left-hand

topology on R.

(ii) Let X with the relation ≤ be a totally ordered set with at least two elements.

De�ne the intervals (a,∞) = {x ∈ X| a ≤ x and a ̸= x}, (−∞, a) = {x ∈
X|x ≤ a and x ̸= a}, and (a, b) = {x ∈ X| a ≤ x , x ≤ b , x ̸= a , and x ̸= b}
for all a, b ∈ X. Then these intervals, for all a, b ∈ X, form a base for a topology

τ on X called the order topology.
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Exercise 3.1.10. Consider the relation R on R2 de�ned by (a, b)R(c, d) if a < c or,

if a = c, then b ≤ d. Prove that R2 with the relation R is a totally ordered set (this

order on R2 is called the lexicographic order). If we then equip R2 with the order

topology, basic open sets would be "intervals" of the form ((a, b),∞), (−∞, (a, b)),

and ((a, b), (c, d)), for all (a, b), (c, d) ∈ R2. Draw pictures of the open intervals

((1, 2), (7,−5)) and ((1, 2), (1, 8)).

De�nition 3.1.11. Let X be a set and let τ1 and τ2 be topologies on X. If τ1 ⊆ τ2,

we say τ1 is weaker or coarser than τ2 and we say τ2 is stronger or �ner than τ1.

Example 3.1.12. If τ1 is the trivial topology on R and τ2 is the usual topology

on R, then τ1 ⊆ τ2 so τ1 is weaker than τ2 or τ2 is stronger than τ1. If τ3 is the

distinguished point topology on R, for some x0 ∈ R, then τ2 ⊈ τ3 and τ3 ⊈ τ2 so

neither topology is stronger or weaker than the other. Another way to say this is

that τ2 and τ3 are incomparable.

While a base for a topology tells us what each element of the topology looks like, we

can take this idea a step further and discuss a subbase, which shows us what each

basic open set looks like.

De�nition 3.1.13. Let (X, τ) be a topological space. We say a subset C of τ forms

a subbase for the topology τ if

B = {∩n
i=1Ci|n ∈ Z+ and Ci ∈ C}

forms a base for τ .

Note that if we want a collection of subsets of a set X to form a base for a topology

on X, then we have to satisfy the properties (i) and (ii) as discussed in Theorem

3.1.7. We do not have to do anything like this for a subbase. Given any collection of

subsets of a set X, it will form a subbase for a topology on X, as the next proposition

shows.
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Proposition 3.1.14. Let X be a set and let C ⊆ P(X). Then C is a subbase for a

topology τ on X. Further, τ is the weakest topology containing C (by this we mean,

if τ1 is a topology on X and C ⊆ τ1 then τ ⊆ τ1).

Proof. Let X be a set and let C be a family of subsets of X. Let

B = {∩n
i=1Ci|n ∈ Z+ and Ci ∈ C} .

We have to show B satis�es properties (i) and (ii) of Theorem 3.1.7. First, B includes

empty intersections. Since an empty intersection equals X, we have that X ∈ B.
Hence, for any x ∈ X, there exists an element of B which contains x (namely, X).

Hence, B satis�es property (i).

For property (ii), let U1, U2 ∈ B and x ∈ U1∩U2. Since U1, U2 ∈ B, there exist n,m ∈
Z+ and Ci, Dj ∈ C, for i = 1, 2, . . . , n and j = 1, 2, . . . ,m, such that U1 = ∩n

i=1Ci

and U2 = ∩m
j=1Dj. So, let U3 = (∩n

i=1Ci) ∩
(
∩m

j=1Dj

)
∈ B. Then, x ∈ U3 ⊆ U1 ∩ U2

and so property (ii) is satis�ed as well.

De�nition 3.1.15. Let X is a set and C ⊆ P(X). Then, as we saw above, C is a

subbase for a topology τ on X. We call τ the topology generated by the subbase

C and it is the weakest topology on X containing C.

As the reader will see later in the notes, using subbases is a convenient way to de�ne

a topology. We simply have to specify which sets are in our subbase and then we can

generate the weakest topology which contains those sets. A word of caution though,

while it is often nice to be able to pick which sets we want to be open and then

generate a topology which includes those sets, it does generate the weakest topology

which does so. This can leave us with a topology which isn't particularly robust.

For example, if, for whatever reason, we would like a topology on R which makes

the interval [1, 2] an open set, and we let C = {[1, 2]}, then the base we will get is

β = {R, [1, 2]}, and the topology we will end up with is τ = {∅,R, [1, 2]} which is
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not particularly interesting.

3.2 Closed Sets

De�nition 3.2.1. Let (X, τ) be a topological space. We say a set A ⊆ X is closed

if Ac ∈ τ .

Example 3.2.2. (i) Consider R with the usual topology. Any set of the form

[a, b], where a < b, is closed since [a, b]c = (−∞, a)∪ (b,∞) which is open since

it is the union of two open sets. Any set of the form (a, b], where a < b is not

open, as we have seen. It is also not closed since (a, b]c = (−∞, a] ∪ (b,∞)

which is not open. Further, we know ∅ and R are both open. Hence ∅ and R
are both closed, since ∅c = R and Rc = ∅. Hence, it is possible for a subset of

R to be open, closed, both open and closed, or neither open nor closed.

(ii) Consider any nonempty set X with the discrete topology. Since every set is

open, the complement of every set is open, and so every set is closed.

(iii) Let X be a nonempty set and x0 ∈ X. Equip X with the distinguished point

topology τx0 . The open sets are ∅ and any set containing x0 so the closed sets

are X and any set which does not contain x0. Note here that besides ∅ and X

(which are both open and closed), a set is either open or closed, depending on

whether or not it contains x0.

De�nition 3.2.3. Let (X, τ) be a topological space and let A ⊆ X. If A ∈ τ and

Ac ∈ τ , then we say A is clopen.

Exercise 3.2.4. Let (X, τ) be a topological space.

(i) Let I be an index set and let Ai be a closed set, for all i ∈ I. Prove ∩i∈IAi is

closed.
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(ii) Let n ∈ Z+ and let A1, A2, . . . , An be closed sets. Prove ∪n
i=1Ai is closed.

(iii) Give an example of closed sets A1, A2, . . . such that ∪∞
i=1Ai is not closed.

De�nition 3.2.5. Let (X, τ) be a topological space and let A ⊆ X. The closure of

A in X is the set

A =
⋂

{C ⊆ X|C is closed and A ⊆ C}.

The interior of A in X is the set

Ao =
⋃

{U ⊆ X : U is open and U ⊆ A}.

Theorem 3.2.6. Let (X, τ) be a topological space and let A and B be subsets of X.

Then

(i) If A ⊆ B, then A ⊆ B,

(ii) A = A,

(iii) A ∪B = A ∪B,

(iv) ∅ = ∅, and

(v) A is closed if and only if A = A.

Proof. First note that for any C ⊆ X, we have that C is closed since it is de�ned as

an intersection of closed sets.

(i) Let A ⊆ B. Since A ⊆ B ⊆ B, we have that B is a closed set containing A. Since

A is de�ned to be the intersection of all closed sets which contain A, we have that

A ⊆ B.
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(iii) Well, A ⊆ A and B ⊆ B so A∪B ⊆ A∪B. Hence, A∪B is a closed set containing

A∪B, so A ∪B ⊆ A∪B. For the other inclusion, we have that A ⊆ A∪B so, by (i),

we have A ⊆ A ∪B. Similarly, B ⊆ A ∪B so B ⊆ A ∪B. Hence A ∪B ⊆ A ∪B.

(v) First, suppose A is closed. Since every set is contained in its closure, we have

that A ⊆ A. Since A is the intersection of all closed sets which contain A and A is

a closed set which contains itself, we have that A ⊆ A and so A = A. Now suppose

A = A. Since A is de�ned as an intersection of closed sets, we have that A is closed.

Since A = A, we then have that A is closed.

(ii) For any set A, we know A is closed. Then, by (v), we have that A = A.

(iv) The empty set is closed, so by (v) we have ∅ = ∅.

Exercise 3.2.7. Let (X, τ) be a topological space and let A and B be subsets of X.

Prove the following statements.

(i) If A ⊆ B, then Ao ⊆ Bo.

(ii) A0 ⊆ A.

(iii) (Ao)o = Ao.

(iv) (A ∩B)o = A0 ∩B0.

(v) Xo = X.

(vi) A is open if and only if A = Ao.

Exercise 3.2.8. Let (X, d) be a metric space. De�ne the closed ball centered at

x or radius r > 0 to be Bd(x, r) = {y ∈ X : d(x, y) ≤ r}. Prove that for all x ∈ X

and r > 0, Bd(x, r) is closed and Bd(x, r) = Bd(x, r).

Another way to discuss closed sets and the closure of sets is to introduce the concept

of limit points. We will start with the de�nition.
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De�nition 3.2.9. Let (X, τ) be a topological space and let A ⊆ X. We say x ∈ X

is a limit point of A if every open neighborhood of x intersects A at a point other

than x. Said di�erently, x is a limit point for A if, for every open neighborhood U

of x, we have that (U ∩ A) \ {x} ≠ ∅.

In the de�nition above, note that elements of A are not necessarily limit points of A.

We want to avoid isolated elements of A being considered limit points. For example,

if A = [0, 1) ∪ {2}, the element 2, while in A, is not a limit point of A. Note also,

that while 1 is not in A, it is a limit point of A.

The next theorem gives us a di�erent way to characterize closed sets and the closure

of sets. It is sometimes given as the de�nition of a closed set, particularly in analysis

textbooks. For us, it is a theorem.

Theorem 3.2.10. Let (X, τ) be a topological space and let A ⊆ X. Let A′ be the set

of all limit points of A. Then A = A ∪ A′.

Proof. Let x ∈ A′ and suppose x /∈ A. Then there exists a closed set C such that

A ⊆ C and x /∈ C. Hence, x ∈ Cc and Cc is open, so Cc is an open neighborhood of

x. However, A ⊆ C so Cc ∩ A = ∅ which contradicts the fact that x is a limit point

of A. Thus, we must have that x ∈ A and so A′ ⊆ A. Since A ⊆ A, we then have

that A ∪ A′ ⊆ A.

Now, suppose x ∈ A. If x ∈ A then we are done so suppose x /∈ A. We want to

show x ∈ A′. Suppose not. Then there exists an open neighborhood U of x such

that A ∩ U = ∅, since x /∈ A. So, U c is a closed set and A ⊆ U c. Thus, A ⊆ U c but

x /∈ U c. This contradicts the fact that x ∈ A. Hence, we must have that x ∈ A′ and

so A ⊆ A ∪ A′.

One thing the above theorem tells us is that to take the closure of a set, we simply

have to include all of its limit points. This helps us to understand the di�erence
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between a set and its closure along with the elements gained by taking the closure.

Another thing the above theorem tells us is a di�erent way to understand closed sets.

Notice that the theorem implies a set is closed if and only if it contains all of its limit

points.

3.3 Sequences in Topological Spaces

De�nition 3.3.1. Let (X, τ) be a topological space and let (xn)
∞
n=1 be a sequence in

X. For some x ∈ X, we say the sequence (xn)
∞
n=1 converges to x, and write xn

τ−→ x,

if for every open neighborhood O of x there exists N ∈ Z+ such that, if n ≥ N , we

have xn ∈ O.

From our discussion in the previous chapter, this de�nition agrees with the de�nition

of convergent sequences in metric spaces when (X, d) is a metric space and τ is the

topology induced by the metric d. Because of this, it also agrees with our de�nition

of convergent sequences from calculus class when X = R and τ is the usual metric

on R.

If we consider R with the usual topology and wish to show, for example, that the

sequence xn = 1
n
converges to 0 using the de�nition above, we want to show that for

any open neighborhood O of 0, there exists an N ∈ Z+ such that for all n ≥ N , we

have xn ∈ O. This would not only require us to check open sets of the form (a, b)

containing 0 but also open sets like, for example, (−1, 1) ∪ (3, 14) ∪ (28, 112), which

is frustrating, but thankfully, unnecessary as the next theorem tells us that if the

topology has a base, then we do not have to check all of the open neighborhoods of

the limit but rather, just the basic open neighborhoods of the limit.

Theorem 3.3.2. Let (X, τ) be a topological space and suppose B is a base for τ . Let

(xn)
∞
n=1 be a sequence in X and suppose x ∈ X. The sequence xn

τ−→ x if and only



3.3. SEQUENCES IN TOPOLOGICAL SPACES 19

if, for every basic open neighborhood U of x, there exists N ∈ Z+ such that, for all

n ≥ N , we have xn ∈ U .

Proof. For the forward direction, suppose xn
τ−→ x. Let U be a basic open neighbor-

hood of x. Then U is an open neighborhood of x and, since xn
τ−→ x, there exists

N ∈ Z+ such that, for all n ≥ N , we have xn ∈ U .

For the other direction, let O be an open neighborhood of x. By Proposition 3.1.6,

there exists a basic open neighborhood U of x such that U ⊆ O. By our assumption,

there exists N ∈ Z+ such that, for all n ≥ N , we have xn ∈ U ⊆ O.

Example 3.3.3. Consider the sequence (xn)
∞
n=1 in R given by xn = 1− 1

n
.

(i) Suppose R has the usual topology. Then we have seen that the sets of the

form (a, b), where a < b, form a base for the topology. Let U be a basic

open neighborhood of 1 (the limit). Then U = (a, b) for some a, b ∈ R, where
a < 1 < b. Let d = min{1 − a, b − 1}. Then 1 ∈ (1 − d, 1 + d) ⊆ (a, b). Pick

N ∈ Z+ such that N > 1
d
. Then, for all n ≥ N , we have that

xn = 1− 1

n
≥ 1− 1

N
> 1− d.

Clearly, xn < 1 < 1 + d and so xn ∈ (1− d, 1 + d) ⊆ (a, b). Therefore, xn → 1

in the usual topology.

(ii) Now suppose R has the left-hand topology. Thus, sets of the form [a, b), where

a < b, form a base for the topology. In this case, the sequence (xn)
∞
n=1 does

not converge to 1 (or anything else, for that matter) since, for example [1, 2)

is a basic open neighborhood of 1 yet xn /∈ [1, 2) for all n ∈ Z+.

(iii) Suppose now that R has the discrete topology. Then the sequence (xn)
∞
n=1 does

not converge to 1 (or anything else, for that matter). The proof is an exercise

below.
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(iv) Finally, suppose R has the indiscrete topology. Then, xn → x0 for every real

number x0. The proof is an exercise below.

Exercise 3.3.4. Consider the sequence (xn)
∞
n=1 in R given by xn = 1− 1

n
.

(i) Suppose R has the discrete topology. Prove (xn)
∞
n=1 does not converge to 1.

(ii) Suppose R has the indiscrete topology and let x0 ∈ R. Prove xn → x0.

While examples (ii) and (iii) above might seem a little strange, we are certainly

comfortable with the idea of sequences which do not converge. What, perhaps, is

very uncomfortable is what happens in example (iv). Not only have we probably

never seen a sequence which converged to two di�erent limits, but in example (iv),

the sequence converges to uncountably many limits! This is one of the many reasons

to explore various properties of topologies and classify them into di�erent types. We

would like to know, for example, which types of topologies can have sequences which

converge to multiple limits and which types do not. We will discuss these properties

in a later chapter but it is worth pointing out here.

Proposition 3.3.5. Let X be a nonempty set and let τ1 and τ2 be topologies on

X where τ1 is weaker than τ2. Let (xn)
∞
n=1 be a sequence in X and let x ∈ X. If

xn
τ2−→ x, then xn

τ1−→ x.

Proof. Let (xn)
∞
n=1 be a sequence in X such that xn

τ2−→ x, for some x ∈ X. We want

to show xn
τ1−→ x. To this end, let O ∈ τ1 such that x ∈ O. Since τ1 ⊆ τ2, we have

that O ∈ τ2. Since xn
τ2−→ x, there exists N ∈ Z+ such that, for all n ≥ N , we have

that xn ∈ O. Thus, xn
τ1−→ x.

Exercise 3.3.6. Give an example of a set X, topologies τ1 and τ2, where τ1 ⊆ τ2,

along with a sequence (xn)
∞
n=1 in X such that xn

τ1−→ x, for some x ∈ X, but the

sequence (xn)
∞
n=1 does not converge to x with respect to τ2.
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The above proposition and exercise help to explain the language being used when

we say that the topology τ1 is weaker than τ2 as they show that convergence with

respect to the weaker topology is a weaker condition than convergence with respect

to the stronger topology.

3.4 Continuous Functions Between Topological Spaces

De�nition 3.4.1. Let (X, τ) and (Y, σ) be topological spaces and let f : (X, τ) →
(Y, σ). We say f is continuous at x0 ∈ X if, for every open neighborhood U of

f(x0) in Y , there exists an open neighborhood O of x0 in X such that f(O) ⊆ U . If

f is continuous at x0 for each x0 ∈ X, then we say f is continuous on X or simply

say f is continuous.

Exercise 3.4.2. Let (X, τ) and (Y, σ) be topological spaces and suppose B is a base

for τ and D is a base for σ. Let f : (X, τ) → (Y, σ) and let x0 ∈ X. Suppose

that for each basic open neighborhood D of f(x0) in Y , there exists a basic open

neighborhood B of x0 in X such that f(B) ⊆ D. Prove f is continuous at x0.

Proposition 3.4.3. Let (X, τ) and (Y, σ) be topological spaces and let f : (X, τ) →
(Y, σ). Then, f is continuous on X if and only if, for every O ∈ σ we have that

f−1(O) ∈ τ .

Proof. For the forward direction, suppose f is continuous on X. Let O ∈ σ. Let

x ∈ f−1(O). Then f(x) ∈ O and, since f is continuous a x, there exists an open

neighborhood Ux of x in τ such that f(Ux) ⊆ O. Hence, Ux ⊆ f−1(O). Then

f−1(O) = ∪x∈f−1(O)Ux ∈ τ .

For the other direction, suppose f−1(O) ∈ τ , for all O ∈ σ. Let x ∈ X and let O be

an open neighborhood of f(x) in Y . Then x ∈ f−1(O) and, by assuption, f−1(O)
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is open. So, f−1(O) is an open neighborhood of x and f(f−1(O) ⊆ O. Hence, f is

continuous at x. This holds for all x ∈ X and so f is continuous on X.

Exercise 3.4.4. Let (X, τ) and (Y, σ) be topological spaces and let f : (X, τ) →
(Y, σ). Prove that f is continuous if and only if f−1(C) is closed for every closed set

C in Y .

Example 3.4.5. (i) Let X be any nonempty set and let τ be the discrete topology

on X. Let (Y, σ) be any topological space and let f : (X, τ) → (Y, σ). Then f

is continuous.

(ii) Let X = Y = R and τ = σ be the usual topology on R. Then all of your

continuous functions f : R → R from high school and calculus (like polynomials,

sin, cos, etc.) are still continuous when viewed as f : (X, τ) → (Y, σ).

(iii) Let X = Y = R, τ be the usual topology on X and σ be the left-hand topology

on Y . Let f : (X, τ) → (Y, σ) where f(x) = x for all x ∈ X. Then f is not

continuous. The proof is a following exercise.

Exercise 3.4.6. Let X = Y = R, τ be the usual topology on X and σ be the

left-hand topology on Y . Let f : (X, τ) → (Y, σ) where f(x) = x for all x ∈ X.

Prove f is not continuous.

Similar to convergent sequences, if the topology of our codomain has a base, then

it is enough to check that the inverse image of every basic open set is open in the

domain.

Theorem 3.4.7. Let (X, τ) and (Y, σ) be topological spaces and suppose B is a basis

for σ. Let f : (X, τ) → (Y, σ). Then f is continuous if and only if, for every U ∈ B,
we have f−1(U) ∈ τ .

Proof. The forward direction is trivial since B ⊆ σ, so, if B ∈ B then B ∈ σ and

therefore we have that f−1(B) ∈ τ .
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For the backwards direction, let O ∈ σ. Then O = ∪i ∈ IUi where Ui ∈ B, for all
i ∈ I. Then

f−1(O) = f−1 (∪i∈IUi) = ∪i∈If
−1(Ui) ∈ τ

since f−1(Ui) ∈ τ for all i ∈ I by assumption. Therefore, f is continuous on X.

Exercise 3.4.8. You might be tempted in the above theorem to also incorporate a

base for τ . Explain why the statement below is false.

Fake Theorem: Let (X, τ) and (Y, σ) be topological spaces and suppose B is a base

for σ and C is a base for X. Let f : (X, τ) → (Y, σ). Then f is continuous if and

only if, for every U ∈ B, we have f−1(U) ∈ C.

Proposition 3.4.9. Let X and Y be nonempty sets and let τ be a topology on X

and σ1 and σ2 be topologies on Y where σ1 is weaker than σ2. Let f : X → Y . If

f : (X, τ) → (Y, σ2) is continuous, then f : (X, τ) → (Y, σ1) is continuous.

Proof. Let f : (X, τ) → (Y, σ2) be continuous. To show f : (X, τ) → (Y, σ1) is

continuous, we have to show f−1(O) ∈ τ for all O ∈ σ1. But, if O ∈ σ1, then

O ∈ σ2 since σ1 ⊆ σ2. And, since f : (X, τ) → (Y, σ2) is continuous, we have that

f−1(O) ∈ τ .

Proposition 3.4.10. Let X and Y be nonempty sets and let τ1 and τ2 be topologies

on X where τ1 is weaker than τ2. Let σ be a topology on Y and let f : X → Y . If

f : (X, τ1) → (Y, σ) is continuous, then f : (X, τ2) → (Y, σ) is continuous.

Proof. Let f : (X, τ1) → (Y, σ) be continuous. To show f : (X, τ2) → (Y, σ) is

continuous, we have to show f−1(O) ∈ τ2 for all O ∈ σ. Since f : (X, τ1) → (Y, σ) is

continuous, we know f−1(O) ∈ τ1 and, since τ1 ⊆ τ2, we have that f
−1(O) ∈ τ2.

The above two propositions show that we have to be careful when using the language

of "stronger" and "weaker" when discussing continuous functions between topological
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spaces. For a function f : X → Y , continuity with respect to a weaker topology on

Y is, in fact, a weaker condition than continuity with respect to a stronger topology

on Y . However, continuity with respect to a weaker topology on X is actually a

stronger condition than continuity with respect to a stronger topology on X.

Exercise 3.4.11. Let(X, τ), (Y, σ), and (Z, η) be topological spaces and let f :

(X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be continuous. Then g ◦ f : (X, τ) → (Z, η)

is continuous.

3.5 Homeomorphisms

If the reader has ever taken an abstract algebra class, then they are familiar with

the idea of isomorphic groups. To be clear, if we have an isomorphism between

two groups, then we say the groups are isomorphic. What this tells us is that,

algebraically, there is really no di�erence between the two groups. If we just relabel

the elements of one group (which is basically what the isomorphism does), then you

will end up with the other group and vice versa. In topology, instead of isomorphisms,

we have what are called homeomorphisms. They are a map between two topological

spaces with certain properties, the existence of which tells us that the two topological

spaces are topologically equivalent. That is, from a topological perspective, the two

spaces are essentially the same. Let us now be more rigorous.

De�nition 3.5.1. Let (X, τ) and (Y, σ) be two topological spaces and let f :

(X, τ) → (Y, σ). We say f is a homeomorphism if f is a bijection, f is con-

tinuous, and f−1 (which is well-de�ned since f is a bijection) is continuous. In this

case, we say the topological spaces (X, τ) and (Y, σ) are homeomorphic.

Before we look at examples, the next theorem and exercise give a more clear under-

standing as to why two homeomorphic spaces are topologically equivalent.
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Theorem 3.5.2. Let (X, τ and (Y, σ) be topological spaces and suppose f : (X, τ) →
(Y, σ) is a bijection. The following are equivalent:

(i) f is a homeomorphism,

(ii) O ∈ τ ⇔ f(O) ∈ σ,

(iii) U ∈ σ ⇔ f−1(U) ∈ τ ,

(iv) C is closed in X ⇔ f(C) is closed in Y , and

(v) D is close in Y ⇔ f−1(D) is closed in X.

Proof. We will proceed by proving (i)⇒(ii)⇒(iii)⇒(iv)⇒(v)⇒(i).

[(i)⇒(ii)] Let f be a homeomorphism. Let O ∈ τ . Since f−1 is continuous, we have

that f(O) = (f−1)−1(O) ∈ σ. For the other direction, suppose f(O) ∈ σ for some

O ⊆ X. Since f is cointinuous, O = f−1(f(O)) ∈ τ .

[(ii)⇒ (iii)] Let U ∈ σ. If f−1(U) /∈ τ then, by (i), we have that U = f(f−1(U) /∈ σ.

For the other direction, let U ⊆ Y and suppose f−1(U) ∈ τ . Then, by (i), we have

that U = f(f−1(U)) ∈ σ.

[(iii)⇒(iv)] Let C be a closed set in X. Then Cc ∈ τ . If f(Cc) /∈ σ then, by

(iii), we have that Cc = f−1(f(Cc)) /∈ τ . So, we have that f(Cc) ∈ σ and, since

f(Cc) = f(C)c, we have that f(C)c ∈ σ and so f(C) is closed. For the other

direction, suppose f(C) is closed, where C ⊆ X. Then f(C)c ∈ σ. By (iii), we have

f−1(f(C)c) ∈ τ and Cc = (f−1(f(C)))c, so Cc ∈ τ . Hence, C is closed in X.

[(iv)⇒(v)] Suppose D is closed in Y . If f−1(D) is not closed in X then, f(f−1(D)) =

D is not closed in Y . Hence, f−1(D) must be closed in Y . For the other direction,

suppose f−1(D) is closed in X. Then f(f−1(D)) = D is closed in Y .
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[(v)⇒(i)] Let O be open in Y . Then Oc is closed in Y . By (v), we have that f−1(Oc)

is closed in X. That is, f−1(O)c is closed in X, and so f−1(O) ∈ τ . Now, let O be

open in X. Then Oc is closed in X. If f(Oc) is not closed in Y then, by (v), we have

that f−1(f(Oc)) = Oc is not closed in X. Hence, we must have that f(Oc) is closed

in Y and so f(O) ∈ σ.

The above theorem emphasizes the fact that the two spaces (X, τ) and (Y, σ) are

topologically equivalent. The function f relabels the elements of X in a way which

preserves the topological structure of the space. That is to say, it preserves the open

sets (and therefore the closed sets as well).

Exercise 3.5.3. Let T be the set of all topological spaces and de�ne a relation ∼ on

T by (X, τ) ∼ (Y, σ) if and only if (X, τ) and (Y, σ) are homeomorphic. Prove ∼ is

an equivalence relation on T Hint: We have to show that ∼ satis�es the de�ning three

properties of an equivalence relation; re�exivity, symmetry, and transitivity. That is,

show that any topological space is homeomorphic to itself; that if (X, τ) is homeomor-

phic to (Y, σ), then (Y, σ) is homeomorphic to (X, τ); and if (X, τ) is homeomorphic

to (Y, σ) and (Y, σ) is homeomorphic to (Z, η), then (X, τ) is homeomorphic to (Z, η).

Notation: Because ∼ de�ned above is an equivalence relation, from now on we will

write (X, τ) ∼= (Y, σ) if (X, τ) and (Y, σ) are homeomorphic.

Example 3.5.4. (i) Consider R2 with the usual topology τ (the topology induced

by the usual metric, d0, on R2) and C with the topology σ induced by the

metric d1 on C given by d(x, y) = |x − y|, where |z| is the modulus of z ∈ C.
Then (R2, τ) is homeomorphic to (C, σ).

(ii) Let a, b ∈ R∪{−∞,∞} where a < b. It is not di�cult to see that all the sets of

the form (c, d), where c, d ∈ R∪{−∞,∞} and a ≤ c < d ≤ b form a base for a

topology on (a, b). If we endow all of our open intervals with this topology then,

for example (0, 1) is homeomorphic to (1,∞), and (−10, 10) is homeomorphic
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to (−1, 1). In fact, any open interval with this topology is homeomorphic to

any other open interval with its corresponding topology.

(iii) Consider the usual topology τ2 on R and recall that it is the topology generated

by the usual metric on R. Now, recall the metric d1 : R × R → R given by

d1((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2| and let τ1 be the topology generated

by d1. Then (R, τ2) and (R, τ1) are homeomorphic. In fact, τ1 = τ2! This

fact will become abundantly clear later in the notes when we discuss topologies

generated by norms on �nite dimensional vector spaces.

We will see many other examples of homeomorphic spaces as we progress through

these notes.
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