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In the last chapter we saw that one very important reason to concern ourselves
with topological spaces is to introduce an analytic structure to more general sets of
objects or to change the analytic structure on sets which already have one. With
this framework, one could say that to study topology is to study analysis in its most
abstract setting. Certainly, many mathematicians take this point of view, especially
those who primarily work in analysis or analysis adjacent fields. It should be stated
though that another perspective is that topology is an abstraction of geometry. Of
course, even with our very limited understanding of topology up to this point, we
can see some overlap as we have already talked about distance between two points,
open disks, open squares, the Cartesian plane, etc. Nevertheless, the entirety of this
perspective is probably not clear to the reader but we will attempt to address it in

more detail as we progress through these notes.

To continue with our discussion from the last chapter, we found a way to address
analytic properties without having to mention a metric but rather open sets. We
decided that if simply designate which subsets are open, then we can define certain
analytic properties to sequences and functions. If we look back at the definition of
a metric, we didn’t want any function d : X x X — R to be a metric on X. We
wanted d to satisty certain properties we would expect distance to satisfy. The same
is true in defining our open sets (which, in so doing, defines a topology). We want
the open sets to satisfy certain properties that we would expect open sets to satisfy.
Admittedly, these properties are not as obvious as the defining properties of metrics
but, after much debate and trial and error, these are the properties for which we

have decided to be the most appropriate.

3.1 Definitions and Examples

Definition 3.1.1. Let X be a nonempty set. We say a set 7 C P(X) is a topology

on X if it satisfies the following properties:
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0,.Xer

7 is closed under the formation of arbitrary unions. That is, if I is an index set

and A; € 7, for all © € I, then U;c1A; € 7, and

7 is closed under the formation of finite intersections. That is, if n € Z,, and
A, Ay, oA, €1, then NP A €T

The elements of 7 are called open sets. The ordered pair (X, 7) is called a topo-

logical space. If + € X and U € 7 such that z € U then we call U an open

neighborhood of =z.

As I mentioned, it is not completely clear at this point, why we require our open

sets to have these defining properties. It is worth recalling though that in a metric

space, our open sets satisfy these properties. So, at the very least, these properties

should not be surprising.

Example 3.1.2. (i) Let X be a nonempty set and let 7 = {0, X}. Then 7 is a

(i)

topology on X called the trivial topology or indiscrete topology. Note
here that the only open sets are () and X.

Let X be a nonempty set and let 7 = P(X). Then 7 is a topology on X
called the discrete topology. Every set here is open. When we say a field
of mathematics is "discrete" or, when we study Discrete Mathematics, we're
studying mathematical objects without any topological structure. Imposing
the discrete topology on a set X essentially gives it no topological structure
since defining every set to be open essentially renders the topological structure

useless.

Let (X,d) be a metric space and let 7 be the set of all open sets as they were
defined in Chapter 2. Then, from a theorem from Chapter 2, 7 is a topology on
X called the metric topology on X induced by d. If (X, 7) is a topological
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space and their exists a metric d such that the topology induced by d equals T,

then we say the topological space (X, 7) is metrizable.

Consider R with the usual metric d and let 7 be the metric induced by d. Then
7 is called the usual topology on R. The elements of 7 are precisely the
open sets we discuss in high school and our calculus classes. For example, the
intervals of the form (a,b) are open as is any union of intervals of this form.

Intervals of the form (a, ], [a,b), and [a, b] are not open.

Consider the set R and define 7 = {(a,00) : @« € R} U{R,0}. Then 7 is a
topology on R and it’s called the right ray topology. It is an exercise below

to prove 7 is a topology.

Let X be a nonempty set and define 7 to be the collection of all subsets of X
whose complement is finite. That is, A € 7 < A€ is finite. Then 7 is a topology
on X called the finite complement topology.It is an exercise below to prove
T is a topology. Note that if X is a finite set then 7 equals the discrete topology
on X.

Let X be a nonempty set and fix an xy € X. Define 7,, = {A € P(X) :
zo € A} U{0}. Then 7., is a topology on X called the distinguished point

topology. It is a following exercise to prove 7., is a topology.

Exercise 3.1.3. (i) Prove the right ray topology is a topology on R.

(i)

(iii)

Let X be an infinite set. Prove the finite complement topology is a topology
on X.

Let X be a nonempty set and let zy € X. Prove that the distinguished topology,

Tz, 15 @ topology on X.

It is often easier to define a topology by defining the sets which make up all of the

open sets. For example, in a metric space (X, d), we saw that every open set can be
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written as the union of sets of the form By(x,r) for some x € X and r > 0. We also
used the terminology that the collection of all sets of the form B,(z,r) is a "base for
the topology on X" and we called the sets of the form Bgy(x,r) "basic open sets."

We carry these concepts and terminology to general topological spaces.

Definition 3.1.4. Let (X, 7) be a topological space and let B C 7. We say B forms
a base for the topology if every element of 7 can be written as a union of elements
of B. We then call the elements of B basic open sets. If x € X and U € B such
that x € U, then we call U a basic open neighborhood of z.

Example 3.1.5. (i) Asdiscussed, if (X, d) is a metric space and B is the collection
of all sets of the form By(z,r), where x € X and r > 0, then B forms a base
for (X, 7) where 7 is the metric topology on X induced by d.

(ii) Consider R with the usual topology and let B = {(a,b) : a,b € R and a < b}.
Then B forms a base for R. Note that an empty union of sets equals the empty

set.

Proposition 3.1.6. Let (X, T) be a topological space and suppose B is a base for T.
Let O be an open neighborhood of x. Then there exists U € B such that x € U C O.

Proof. Let z € X and let O be an open neighborhood of x. Since O € 7 and B is
a base for 7, there exists an index set [ and B; € B such that O = U,/ B;. Since
x € O, we have that x € B;, for some iy € I. Let U = B;,. Then z € U C O. O

Now, suppose we have a set X (without a topology) and we would like to define a
topology by defining the basic open sets. One might be tempted to think that it is
enough to define the sets in By and then define the elements of 7y to be the collection
of all unions of elements from By. But this will not always make 7y a topology. We

need the elements of By to satisfy two properties as the next theorem shows.

Theorem 3.1.7. Let X be a nonempty set (without a topology) and let B be a family
of subsets of X satisfying the properties:
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(i) For every x € X there exists U € B such that x € U, and

(i1) For every Uy, Uy € B and every x € Uy N Uy there exists Us € B such that
x € U3 Q Ul N UQ.

Now, let T be the collection of subsets of X consisting of all unions of elements of B.

Then T s a topology on X and B is a base for .

Proof. First, ) € T since we can write it as an empty union. Further, by property
(i), for all z € X, there exists U, € B such that © € U,. Then, X = U,exU, € 7.

Now, let I be an index set and suppose O; € 7, for all i € I. For each i € I, there
exists an index set K; such that O; = Ugek, Bi;. Then,

UOZ:U U Bkﬂ'ET,

i€l i€l keK;

since it is an arbitrary union of elements from B. Hence, 7 is closed under arbitrary

unions.

Next, we will show that the intersection of two elements of 7 is an element of 7. To
this end, let 01,0, € 7. Let x € O1 N O,. Since x € O, which can be written as
a union of elements from B, there exists B; € B such that x € B C O;. Similarly,
there exists By € B such that x € By C Oy. By property (ii), we then have that
there exists By € B such that € B3 C By N By. Thus, for every x € O N Oy, we
can find B, € B such that x € B, C O; N O,. Thus,

O1 N Oy = Ugeo,n0,B: € T.

We will now use induction to show that any finite intersection of elements from 7
is an element of 7. Let n € Z,. The case when n = 1 is trivial and we proved the

n = 2 case above. Suppose that for some k € Z,, we have that if O1,0,,..., 0y € T,
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then NF_,0; € 7. Let 01,0, ...,0;1 € 7. By hypothesis, we have that N*_,0; € 7

and, since Og,1 € 7, by the n = 2 case, we have that
M O; = (NE,0:) N Ok € 7.
Thus, 7 is closed under finite intersections. ]

Definition 3.1.8. If X is a set and B is a collection of subsets of X satisfying
properties (i) and (ii) above then the topology 7 constructed above is called the

topology on X generated by the base B.

Note that if (X,7) is a topological space and [ is a base for 7, then [ satisfies
properties (i) and (ii) of Theorem 3.1.7. It follows directly from Proposition 3.1.6.

Example 3.1.9. (i) Consider the set R and let B be the set of all intervals of the
form [a,b), where a,b € R and a < b. Note that B is not itself a topology on R
as, for example, [1,2),[3,4) € B but [1,2) U [3,4) ¢ B. However, we can easily
see that B satisfies properties (i) and (ii) of Theorem 3.1.7. Indeed, for any
r €R, x € [x,x+ 1) € B so property (i) is satisfied. Given [a,b),[c,d) € B, if
[a,b)N[c,d) = 0 then there is nothing to prove. Suppose [a,b)N[c, d) # () and let
x € [a,b) N[c,d). Let m = min{b,d}. Then [z,m) C [a,b) and [z, m) C [c,d),
thus [x,m) € B and z € [x,m) C [a,b) N [c,d). Thus, if we define 7 to be the
collection of all subsets of R consisting of unions of sets from B, then 7 is a
topology on R and B is a base for 7. The topology 7 is called the left-hand
topology on R.

(i) Let X with the relation < be a totally ordered set with at least two elements.
Define the intervals (a,00) = {z € X|a < z and a # z}, (—o0,a) = {x €
X|z <aand z # a}, and (a,b) ={z € X|a<z,x<b,x #a, and x # b}
for all a,b € X. Then these intervals, for all a,b € X, form a base for a topology
7 on X called the order topology.
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Exercise 3.1.10. Consider the relation R on R? defined by (a,b)R(c,d) if a < ¢ or,
if a = ¢, then b < d. Prove that R? with the relation R is a totally ordered set (this
order on R? is called the lexicographic order). If we then equip R? with the order
topology, basic open sets would be "intervals" of the form ((a,b),c0), (—o0, (a,b)),

and ((a,b), (c,d)), for all (a,b),(c,d) € R? Draw pictures of the open intervals
((17 2)7 (7a _5)) and ((17 2)7 (17 8))

Definition 3.1.11. Let X be a set and let 7, and 7, be topologies on X. If 7y C 7y,

we say 7; is weaker or coarser than 75 and we say 7, is stronger or finer than 7.

Example 3.1.12. If 71 is the trivial topology on R and 75 is the usual topology
on R, then 7 C 75 so 71 is weaker than 75 or 75 is stronger than 7. If 75 is the
distinguished point topology on R, for some xg € R, then 7 € 75 and 73 € 7 so
neither topology is stronger or weaker than the other. Another way to say this is

that 7 and 73 are incomparable.

While a base for a topology tells us what each element of the topology looks like, we
can take this idea a step further and discuss a subbase, which shows us what each

basic open set looks like.

Definition 3.1.13. Let (X, 7) be a topological space. We say a subset C of 7 forms
a subbase for the topology 7 if

B = {ﬂf‘:lC'l]n € Z+ and Cl S C}
forms a base for 7.

Note that if we want a collection of subsets of a set X to form a base for a topology
on X, then we have to satisfy the properties (i) and (ii) as discussed in Theorem
3.1.7. We do not have to do anything like this for a subbase. Given any collection of
subsets of a set X, it will form a subbase for a topology on X, as the next proposition

shows.



3.1. DEFINITIONS AND EXAMPLES 13

Proposition 3.1.14. Let X be a set and let C C P(X). Then C is a subbase for a
topology 7 on X. Further, T is the weakest topology containing C (by this we mean,

if 1 is a topology on X and C C 1y then 7 C 7).

Proof. Let X be a set and let C be a family of subsets of X. Let
B = {ﬂ?lel]n € Z+ and Cz S C} .

We have to show B satisfies properties (i) and (ii) of Theorem 3.1.7. First, B includes
empty intersections. Since an empty intersection equals X, we have that X € B.
Hence, for any x € X, there exists an element of B which contains = (namely, X).

Hence, B satisfies property (i).

For property (i), let Uy, Uy € B and « € UyNU,. Since Uy, U, € B, there exist n,m €
Zy and C;,D; € C, for i = 1,2,...,n and j = 1,2,...,m, such that U; = N},C;
and Uy = N7, D;. So, let Us = (N7_,C;) N (N2, D;) € B. Then, z € Uy € U; N Us
and so property (ii) is satisfied as well. O

Definition 3.1.15. Let X is a set and C C P(X). Then, as we saw above, C is a
subbase for a topology 7 on X. We call 7 the topology generated by the subbase
C and it is the weakest topology on X containing C.

As the reader will see later in the notes, using subbases is a convenient way to define
a topology. We simply have to specify which sets are in our subbase and then we can
generate the weakest topology which contains those sets. A word of caution though,
while it is often nice to be able to pick which sets we want to be open and then
generate a topology which includes those sets, it does generate the weakest topology
which does so. This can leave us with a topology which isn’t particularly robust.
For example, if, for whatever reason, we would like a topology on R which makes
the interval [1,2] an open set, and we let C = {[1,2]}, then the base we will get is
g = {R,[1,2]}, and the topology we will end up with is 7 = {0, R, [1,2]} which is
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not particularly interesting.

3.2 Closed Sets

Definition 3.2.1. Let (X, 7) be a topological space. We say a set A C X is closed
if A¢er.

Example 3.2.2. (i) Consider R with the usual topology. Any set of the form

[a, b], where a < b, is closed since [a, b]® = (—00, a) U (b, o) which is open since
it is the union of two open sets. Any set of the form (a,b], where a < b is not
open, as we have seen. It is also not closed since (a,b]* = (—o0,a] U (b, 00)
which is not open. Further, we know () and R are both open. Hence () and R
are both closed, since ) = R and R¢ = (). Hence, it is possible for a subset of

R to be open, closed, both open and closed, or neither open nor closed.

Consider any nonempty set X with the discrete topology. Since every set is

open, the complement of every set is open, and so every set is closed.

Let X be a nonempty set and xqg € X. Equip X with the distinguished point
topology 7,,. The open sets are () and any set containing z, so the closed sets
are X and any set which does not contain xy. Note here that besides () and X
(which are both open and closed), a set is either open or closed, depending on

whether or not it contains zg.

Definition 3.2.3. Let (X, 7) be a topological space and let A C X. If A € 7 and

A€ € 7, then we say A is clopen.

Exercise 3.2.4. Let (X, 7) be a topological space.

(i)

Let I be an index set and let A; be a closed set, for all i € I. Prove N;crA; is

closed.
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(i) Let n € Z, and let Ay, Ay, ..., A, be closed sets. Prove U | A; is closed.
(iii) Give an example of closed sets Ay, Ay, ... such that U, A; is not closed.

Definition 3.2.5. Let (X, 7) be a topological space and let A C X. The closure of
A in X is the set

A= ﬂ{C’ C X|C is closed and A C C'}.
The interior of A in X is the set
A":U{UQX:UisopenandUgA}.

Theorem 3.2.6. Let (X, 7) be a topological space and let A and B be subsets of X.
Then

(i) If AC B, then A C B,

(i) A=A,
(iii) AUB =AU B,

(iv) D=0, and

(v) A is closed if and only if A= A.

Proof. First note that for any C C X, we have that C is closed since it is defined as

an intersection of closed sets.

(i) Let A C B. Since AC B C B, we have that B is a closed set containing A. Since
is defined to be the intersection of all closed sets which contain A, we have that
C B.

NN
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(iii) Well, A € Aand B C Bso AUB C AUB. Hence, AUB is a closed set containing
AUB, so AU B C AUB. For the other inclusion, we have that A C AU B so, by (i),
we have A C AU B. Similarly, BC AUBso BC AUB. Hence AUB C AU B.

(v) First, suppose A is closed. Since every set is contained in its closure, we have
that A C A. Since A is the intersection of all closed sets which contain A and A is
a closed set which contains itself, we have that A C A and so A = A. Now suppose
A = A. Since A is defined as an intersection of closed sets, we have that A is closed.

Since A = A, we then have that A is closed.
(ii) For any set A, we know A is closed. Then, by (v), we have that A=A
(iv) The empty set is closed, so by (v) we have § = 0. O
Exercise 3.2.7. Let (X, 7) be a topological space and let A and B be subsets of X.
Prove the following statements.
(i) If A C B, then A° C B°.
(i) A% C A.
(iii) (A°)° = A°.
(iv) (AnB)°= AN B°.
(v) X°=X.
(vi) A is open if and only if A = A°.

Exercise 3.2.8. Let (X, d) be a metric space. Define the closed ball centered at
x or radius 7 > 0 to be By(z,7) = {y € X : d(z,y) < r}. Prove that for all z € X
and r > 0, By(x,r) is closed and By(z,7) = By(w, 7).

Another way to discuss closed sets and the closure of sets is to introduce the concept

of limit points. We will start with the definition.
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Definition 3.2.9. Let (X, 7) be a topological space and let A C X. We say z € X
is a limit point of A if every open neighborhood of z intersects A at a point other

than x. Said differently, x is a limit point for A if, for every open neighborhood U
of z, we have that (U N A) \ {z} # 0.

In the definition above, note that elements of A are not necessarily limit points of A.
We want to avoid isolated elements of A being considered limit points. For example,
if A =1[0,1)U {2}, the element 2, while in A, is not a limit point of A. Note also,
that while 1 is not in A, it is a limit point of A.

The next theorem gives us a different way to characterize closed sets and the closure
of sets. It is sometimes given as the definition of a closed set, particularly in analysis

textbooks. For us, it is a theorem.

Theorem 3.2.10. Let (X, 1) be a topological space and let A C X. Let A’ be the set
of all limit points of A. Then A= AU A'.

Proof. Let z € A’ and suppose © ¢ A. Then there exists a closed set C' such that
AC C and x ¢ C. Hence, x € C° and C° is open, so C° is an open neighborhood of
z. However, A C C so C°N A = () which contradicts the fact that z is a limit point
of A. Thus, we must have that z € A and so A’ C A. Since A C A, we then have
that AU A’ C A.

Now, suppose # € A. If x € A then we are done so suppose z ¢ A. We want to
show x € A’. Suppose not. Then there exists an open neighborhood U of z such
that ANU = (), since x ¢ A. So, U® is a closed set and A C U°. Thus, A C U° but
x ¢ U°. This contradicts the fact that = € A. Hence, we must have that € A’ and
so AC AU A O

One thing the above theorem tells us is that to take the closure of a set, we simply

have to include all of its limit points. This helps us to understand the difference
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between a set and its closure along with the elements gained by taking the closure.
Another thing the above theorem tells us is a different way to understand closed sets.
Notice that the theorem implies a set is closed if and only if it contains all of its limit

points.

3.3 Sequences in Topological Spaces

Definition 3.3.1. Let (X, 7) be a topological space and let (z,,)5°, be a sequence in
X. For some x € X, we say the sequence (x,)°°, converges to x, and write z,, — x,
if for every open neighborhood O of x there exists N € Z, such that, if n > N, we
have x,, € O.

From our discussion in the previous chapter, this definition agrees with the definition
of convergent sequences in metric spaces when (X, d) is a metric space and 7 is the
topology induced by the metric d. Because of this, it also agrees with our definition
of convergent sequences from calculus class when X = R and 7 is the usual metric
on R.

If we consider R with the usual topology and wish to show, for example, that the
sequence T, = % converges to 0 using the definition above, we want to show that for
any open neighborhood O of 0, there exists an N € Z, such that for all n > N, we
have x,, € O. This would not only require us to check open sets of the form (a,b)
containing 0 but also open sets like, for example, (—1,1) U (3,14) U (28,112), which
is frustrating, but thankfully, unnecessary as the next theorem tells us that if the
topology has a base, then we do not have to check all of the open neighborhoods of
the limit but rather, just the basic open neighborhoods of the limit.

Theorem 3.3.2. Let (X, 1) be a topological space and suppose B is a base for 7. Let

()22, be a sequence in X and suppose x € X. The sequence x, 5 if and only
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if, for every basic open neighborhood U of x, there exists N € Z, such that, for all
n > N, we have x,, € U.

Proof. For the forward direction, suppose z, — . Let U be a basic open neighbor-
hood of z. Then U is an open neighborhood of z and, since x, — z, there exists
N € Z, such that, for all n > N, we have x,, € U.

For the other direction, let O be an open neighborhood of . By Proposition 3.1.6,
there exists a basic open neighborhood U of x such that U C O. By our assumption,
there exists N € Z, such that, for all n > N, we have x,, € U C O. O

Example 3.3.3. Consider the sequence (x,)22, in R given by 2,, =1 — 1.

(i) Suppose R has the usual topology. Then we have seen that the sets of the
form (a,b), where a < b, form a base for the topology. Let U be a basic
open neighborhood of 1 (the limit). Then U = (a,b) for some a,b € R, where
a<1<b Letd=min{l —a,b—1}. Then 1 € (1—-d,1+d) C (a,b). Pick
N € Z, such that N > %l. Then, for all n > N, we have that

1 1
=l >1-—>1—d.
x o= N >
Clearly, z, <1 <1+dand so x, € (1 —d,1+d) C (a,b). Therefore, x,, — 1
in the usual topology.

(ii) Now suppose R has the left-hand topology. Thus, sets of the form [a, b), where
a < b, form a base for the topology. In this case, the sequence (x,)>°, does
not converge to 1 (or anything else, for that matter) since, for example [1,2)

is a basic open neighborhood of 1 yet z,, ¢ [1,2) for all n € Z,.

(iii) Suppose now that R has the discrete topology. Then the sequence (x,,)22; does
not converge to 1 (or anything else, for that matter). The proof is an exercise

below.
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(iv) Finally, suppose R has the indiscrete topology. Then, z,, — zo for every real

number zy. The proof is an exercise below.

Exercise 3.3.4. Consider the sequence (z,,)52, in R given by z, =1 — 2.

(i) Suppose R has the discrete topology. Prove (z,)5°, does not converge to 1.

(ii) Suppose R has the indiscrete topology and let zq € R. Prove x,, — .

While examples (i) and (iii) above might seem a little strange, we are certainly
comfortable with the idea of sequences which do not converge. What, perhaps, is
very uncomfortable is what happens in example (iv). Not only have we probably
never seen a sequence which converged to two different limits, but in example (iv),
the sequence converges to uncountably many limits! This is one of the many reasons
to explore various properties of topologies and classify them into different types. We
would like to know, for example, which types of topologies can have sequences which
converge to multiple limits and which types do not. We will discuss these properties

in a later chapter but it is worth pointing out here.

Proposition 3.3.5. Let X be a nonempty set and let 7 and m be topologies on
X where 11 is weaker than 1o. Let (x,)°2, be a sequence in X and let v € X. If

T2 T1
T, — x, then x,, — .

Proof. Let (2,)>2, be a sequence in X such that z,, = x, for some » € X. We want
to show x, = z. To this end, let O € 7 such that z € O. Since 1, C 75, we have
that O € 7. Since z,, = x, there exists N € Z, such that, for all n > N, we have
that x, € O. Thus, z,, = z. O

Exercise 3.3.6. Give an example of a set X, topologies 71 and 75, where 71 C 7o,
along with a sequence (z,)>>, in X such that z, =+ =, for some z € X, but the

sequence (z,,)5°, does not converge to x with respect to 7.
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The above proposition and exercise help to explain the language being used when
we say that the topology 71 is weaker than 7 as they show that convergence with
respect to the weaker topology is a weaker condition than convergence with respect

to the stronger topology.

3.4 Continuous Functions Between Topological Spaces

Definition 3.4.1. Let (X, 7) and (Y, 0) be topological spaces and let f : (X, 7) —
(Y,0). We say f is continuous at z, € X if, for every open neighborhood U of
f(zo) in Y, there exists an open neighborhood O of z in X such that f(O) C U. If
f is continuous at xg for each xq € X, then we say f is continuous on X or simply

say f is continuous.

Exercise 3.4.2. Let (X, 7) and (Y, o) be topological spaces and suppose B is a base
for 7 and D is a base for 0. Let f : (X,7) — (Y,0) and let zo € X. Suppose
that for each basic open neighborhood D of f(zg) in Y, there exists a basic open
neighborhood B of xy in X such that f(B) C D. Prove f is continuous at .

Proposition 3.4.3. Let (X, 1) and (Y, 0) be topological spaces and let f: (X, 7) —
(Y,o). Then, [ is continuous on X if and only if, for every O € o we have that
f~Y0) er.

Proof. For the forward direction, suppose f is continuous on X. Let O € 0. Let
r € f7YO). Then f(z) € O and, since f is continuous a z, there exists an open
neighborhood U, of z in 7 such that f(U,) € O. Hence, U, C f~1(O). Then
H0) = Uzer-100)Us € T.

For the other direction, suppose f~1(O) € 7, for all O € ¢. Let # € X and let O be
an open neighborhood of f(x) in Y. Then z € f~1(O) and, by assuption, f~(O)
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is open. So, f71(0) is an open neighborhood of z and f(f~*(O) C O. Hence, f is

continuous at z. This holds for all x € X and so f is continuous on X. ]

Exercise 3.4.4. Let (X, 7) and (Y,0) be topological spaces and let f : (X,7) —
(Y, o). Prove that f is continuous if and only if f~1(C) is closed for every closed set
CinY.

Example 3.4.5. (i) Let X be any nonempty set and let 7 be the discrete topology
on X. Let (Y,0) be any topological space and let f: (X,7) — (Y,0). Then f

1S continuous.

(ii) Let X =Y = R and 7 = o be the usual topology on R. Then all of your
continuous functions f : R — R from high school and calculus (like polynomials,

sin, cos, etc.) are still continuous when viewed as f : (X, 7) — (Y, 0).

(iii) Let X =Y =R, 7 be the usual topology on X and o be the left-hand topology
on Y. Let f: (X,7) = (Y,0) where f(z) = x for all x € X. Then f is not

continuous. The proof is a following exercise.

Exercise 3.4.6. Let X = Y = R, 7 be the usual topology on X and o be the
left-hand topology on Y. Let f : (X,7) — (Y,0) where f(z) = x for all x € X.

Prove f is not continuous.

Similar to convergent sequences, if the topology of our codomain has a base, then
it is enough to check that the inverse image of every basic open set is open in the

domain.

Theorem 3.4.7. Let (X, 1) and (Y, o) be topological spaces and suppose B is a basis
foro. Let f: (X, 7) = (Y,0). Then f is continuous if and only if, for every U € B,
we have f~H(U) € T.

Proof. The forward direction is trivial since B C o, so, if B € B then B € ¢ and
therefore we have that f~1(B) € 7.
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For the backwards direction, let O € . Then O = Ui € IU; where U; € B, for all
1€ I. Then

FH0) = [N (UietUs) = User [T (U3) € 7
since f~1(U;) € 7 for all ¢ € I by assumption. Therefore, f is continuous on X. [

Exercise 3.4.8. You might be tempted in the above theorem to also incorporate a

base for 7. Explain why the statement below is false.

Fake Theorem: Let (X, 7) and (Y,0) be topological spaces and suppose B is a base
for o and C is a base for X. Let f : (X,7) — (Y,0). Then f is continuous if and
only if, for every U € B, we have f~1(U) € C.

Proposition 3.4.9. Let X and Y be nonempty sets and let T be a topology on X
and o1 and oy be topologies on 'Y where o1 is weaker than oo. Let f : X — Y. If
f:(X,7) = (Y,02) is continuous, then f: (X,7) = (Y, 01) is continuous.

Proof. Let f : (X,7) — (Y,02) be continuous. To show f : (X,7) — (Y,01) is
continuous, we have to show f~1(O) € 7 for all O € oy. But, if O € oy, then
O € o0y since 01 C 09. And, since f : (X,7) — (Y, 09) is continuous, we have that
f710) er. O

Proposition 3.4.10. Let X and Y be nonempty sets and let Ty and 15 be topologies
on X where 11 1s weaker than 15. Let o be a topology on'Y and let f : X — Y. If
f(X,m) — (Y,0) is continuous, then f: (X, ) — (Y,0) is continuous.

Proof. Let f : (X,71) — (Y,0) be continuous. To show f : (X,7) — (Y,0) is
continuous, we have to show f~1(0) € 7, for all O € 0. Since [ : (X, 1) — (Y,0) is

continuous, we know f~1(O) € 1, and, since 7, C 75, we have that f~}(O) € 7. O

The above two propositions show that we have to be careful when using the language

of "stronger" and "weaker" when discussing continuous functions between topological
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spaces. For a function f : X — Y, continuity with respect to a weaker topology on
Y is, in fact, a weaker condition than continuity with respect to a stronger topology
on Y. However, continuity with respect to a weaker topology on X is actually a

stronger condition than continuity with respect to a stronger topology on X.

Exercise 3.4.11. Let(X,7), (Y,0), and (Z,n) be topological spaces and let f :
(X,7) = (Y,0) and g : (Y,0) — (Z,n) be continuous. Then go f : (X,7) = (Z,7)

1S continuous.

3.5 Homeomorphisms

If the reader has ever taken an abstract algebra class, then they are familiar with
the idea of isomorphic groups. To be clear, if we have an isomorphism between
two groups, then we say the groups are isomorphic. What this tells us is that,
algebraically, there is really no difference between the two groups. If we just relabel
the elements of one group (which is basically what the isomorphism does), then you
will end up with the other group and vice versa. In topology, instead of isomorphisms,
we have what are called homeomorphisms. They are a map between two topological
spaces with certain properties, the existence of which tells us that the two topological
spaces are topologically equivalent. That is, from a topological perspective, the two

spaces are essentially the same. Let us now be more rigorous.

Definition 3.5.1. Let (X,7) and (Y,0) be two topological spaces and let f :
(X,7) = (Y,0). We say f is a homeomorphism if f is a bijection, f is con-
tinuous, and f~! (which is well-defined since f is a bijection) is continuous. In this

case, we say the topological spaces (X, 7) and (Y, o) are homeomorphic.

Before we look at examples, the next theorem and exercise give a more clear under-

standing as to why two homeomorphic spaces are topologically equivalent.
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Theorem 3.5.2. Let (X, 7 and (Y, o) be topological spaces and suppose f: (X, 7) —

(Y, 0) is a bijection. The following are equivalent:

(i) [ is a homeomorphism,
(1) O € T f(O) € o,
(1ii) U e o< fHU) e,
(iv) C is closed in X < f(C) is closed in'Y, and

(v) D is close inY < f~1(D) is closed in X.

Proof. We will proceed by proving (i)=-(ii)=(iii)=(iv)=(v)=(1).

[(i)=(ii)] Let f be a homeomorphism. Let O € 7. Since f~! is continuous, we have
that f(O) = (f~')71(O) € o. For the other direction, suppose f(O) € o for some
O C X. Since f is cointinuous, O = f~1(f(0)) € 7.

[(ii)= (iii)] Let U € 0. If f~1(U) ¢ 7 then, by (i), we have that U = f(f~}(U) ¢ o.
For the other direction, let U C Y and suppose f~}(U) € 7. Then, by (i), we have
that U = f(f~Y(U)) € o.

[(iii)=(iv)] Let C' be a closed set in X. Then C° € 7. If f(C°) ¢ o then, by
(iii), we have that C¢ = f~1(f(C%)) ¢ 7. So, we have that f(C¢) € o and, since
f(C°) = f(C)° we have that f(C)° € o and so f(C) is closed. For the other
direction, suppose f(C) is closed, where C' C X. Then f(C)¢ € 0. By (iii), we have
FHf(C)) € T and C° = (f1(f(C)))4, so C¢ € 7. Hence, C is closed in X.

[(iv)=-(v)] Suppose D is closed in Y. If f~1(D) is not closed in X then, f(f~1(D)) =
D is not closed in Y. Hence, f~!(D) must be closed in Y. For the other direction,
suppose f~1(D) is closed in X. Then f(f~1(D)) = D is closed in Y.
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[(v)=-(1)] Let O be open in Y. Then O°is closed in Y. By (v), we have that f~(O°)
is closed in X. That is, f~1(O)¢ is closed in X, and so f~1(O) € 7. Now, let O be
open in X. Then O¢is closed in X. If f(O°) is not closed in Y then, by (v), we have
that f~'(f(0O°)) = O° is not closed in X. Hence, we must have that f(O°) is closed
in Y and so f(O) € 0. O

The above theorem emphasizes the fact that the two spaces (X, 7) and (Y, o) are
topologically equivalent. The function f relabels the elements of X in a way which
preserves the topological structure of the space. That is to say, it preserves the open

sets (and therefore the closed sets as well).

Exercise 3.5.3. Let 7 be the set of all topological spaces and define a relation ~ on
T by (X,7) ~ (Y,0) if and only if (X, 7) and (Y, o) are homeomorphic. Prove ~ is
an equivalence relation on T Hint: We have to show that ~ satisfies the defining three
properties of an equivalence relation; reflexivity, symmetry, and transitivity. That is,
show that any topological space is homeomorphic to itself; that if (X, ) is homeomor-
phic to (Y, o), then (Y, o) is homeomorphic to (X, 7); and if (X, T) is homeomorphic
to (Y,0) and (Y, 0) is homeomorphic to (Z,n), then (X, T) is homeomorphic to (Z,n).

Notation: Because ~ defined above is an equivalence relation, from now on we will
write (X,7) = (Y, 0) if (X,7) and (Y, o) are homeomorphic.

Example 3.5.4. (i) Consider R? with the usual topology 7 (the topology induced
by the usual metric, dy, on R?) and C with the topology o induced by the
metric d; on C given by d(z,y) = |z — y|, where |z| is the modulus of z € C.
Then (R?,7) is homeomorphic to (C, o).

(ii) Let a,b € RU{—00,00} where a < b. It is not difficult to see that all the sets of
the form (c, d), where ¢,d € RU{—00,00} and a < ¢ < d < b form a base for a
topology on (a, b). If we endow all of our open intervals with this topology then,

for example (0,1) is homeomorphic to (1,00), and (—10, 10) is homeomorphic
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to (—1,1). In fact, any open interval with this topology is homeomorphic to

any other open interval with its corresponding topology.

(iii) Consider the usual topology 75 on R and recall that it is the topology generated
by the usual metric on R. Now, recall the metric d; : R x R — R given by
di((z1,22), (Y1,92)) = |1 — y1]| + |z2 — y2| and let 7y be the topology generated
by di. Then (R,73) and (R,7;) are homeomorphic. In fact, 77 = 7! This
fact will become abundantly clear later in the notes when we discuss topologies

generated by norms on finite dimensional vector spaces.

We will see many other examples of homeomorphic spaces as we progress through

these notes.



28

CHAPTER 3. INTRODUCTION TO TOPOLOGICAL SPACES



Index

base for a topology, 9
basic open neighborhood, 9
basic open sets, 9

clopen, 14

closed ball, 16

closed set, 14

closure, 15

coarser, 12

continuous at a point, 21

discrete topology, 7
distinguished point topology, 8

finer, 12
finite complement topology, 8

homeomorphic, 24
homeomorphism, 24

indiscrete topology, 7
interior, 15

left-hand topology, 11

29

lexicographic order, 12
limit point, 17

metric topology, 7
metrizable, 8

open neighborhood, 7
open sets in a topology, 7
order topology, 11

right ray topology, 8

stronger, 12
subbase, 12

topological space, 7
topology, 6

topology generated by a base, 11
trivial topology, 7

usual topology on R, 8

weaker, 12



