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4 CHAPTER 2. BRIDGING THE GAP

2.1 Need for Distance

In this chapter, we will discuss the motivations for defining metric spaces along with
examining some basic concepts, properties, and examples of metric spaces. We do
so, at this stage, to then motivate the more general concept of topological spaces
which is the topic of this course. We will revisit metric spaces later in the notes,

once we have a sufficient background in topology.

Starting in the late 1800s, especially due to the new (at the time) set-theoretic
approach to mathematics, it became increasingly necessary to have a rigourous way
to do "calculus-type stuff'" with sets of objects not from R”, and with functions
whose domains and codomains contain objects not from R". For example, you may
have learned in a differential equations course how to solve a system of differential
equations using a series of the form )" ° | A, where A, is a k x k matrix. But how
do we actually define this series? Obviously, it is the limit of the sequence of partial
sums but the sequence of partial sums is a sequence of £ x k matrices. Also note
that the limit is a k£ x k matrix. In fractal geometry, we are interested in defining
the limits of sequences of subsets of R™ which turn out to be useful in processing
images on computers. How do we define the limit in a way which makes sense? Also
in a differential equations class or possibly in a linear algebra class, you may have
discussed differentiation as a function. More precisely, we can think of differentiation
as a function D : A — B where A is a set of differentiable functions on some domain
and B is a set of functions with a certain domain, possibly having other properties.
Continuous functions, as we all know, have very nice properties. Perhaps we want
to know if D has some of these properties. Is D continuous? What does that even

mean?

We learned in our Calculus classes the importance of the concepts of convergent
sequences and continuous functions. These are by no means the only important

concepts but we will focus on these two in order to illustrate the need for metric
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spaces and, later, topological spaces. Let’s first examine the definitions of convergent

sequences and continuous functions from Calculus.

Definition 2.1.1. Let (z,)5°, be a real-valued sequence. We say that (z,)0,
converges if there exists L € R such that for all ¢ > 0, there exists N € Z,
such that, for all n > N, we have |z,, — L| < e. In this case we say (z,)%, converges

to L and write x,, — L.

Definition 2.1.2. Let A be a set and let f : A — R. For x € A we say f is
continuous at x if, for all ¢ > 0, there exists 6 > 0 such that if y € A and
|z —y| <0, then |f(z) — f(y)| < e. If fis continuous at x for all x € A, then we say

f is continuous on A or, since A is the domain of f, we simply say f is continuous.

Let’s examine the definitions above and think about whether or not they apply
to some more general sequences or functions. For example, does the definition for
a convergent sequence work if we have a sequence of k x k matrices instead of a

sequence of real numbers? Let’s see what it would look like.

Fake Definition: Let (A,)S2, be a sequence of k X k matrices. We say (A,)>2,

converges if there exists a k X k matriz B such that for all e > 0, there exists N € Z,
such that, for all n > N, we have |A,, — B| < e.

Does it work? The problem here is the expression "|A,,—B| < e." Given kxk matrices
A, and B, certainly A, — B makes sense. We learn how to subtract matrices in Linear
Algebra. But what is the absolute value of a matrix? Of course, we could define it
to be anything we want, as long as the end result is a real number so that the "< €"
part still works. But how do we do it in a way that makes sense and gives us the

limits that we want?

Let’s instead think about the same definition but with a sequence of subsets from
R2.
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Fake Definition: Let (C,,)2, be a sequence of subsets of R*. We say (C,,)>%, con-

verges if there erists a subset B of R? such that for all € > 0, there exists N € Z,
such that, for all n > N, we have that |C,, — B| < e.

The problem here is again the inequality that shows up at the end, namely, "|C,, —
B| < e." Again, we do not have a clear way to define the absolute value of a subset
of R? but we also do not have a relevant concept of substraction between two subsets
of R? either.

If we examine the definition of a continuous function f and try to replace A C R and
R with generic sets, we will see that we run into precisely the same sort of issues.

How do we make sense of "|z — y| < 6" and "|f(x) — f(y)| < €?"

It seems that, in order for the definition of a convergent sequence of real numbers to
make sense for sequences of objects converging to other objects or for the definition
of a continuous function to make sense between sets of generic objects, we need the
set of those objects to have an algebraic structure where subtraction is defined as
well as an absolute value which associates one of these objects to a nonnegative
number. If we follow this path, it will lead us to the study of mathematical objects
called normed vector spaces. While they are certainly related to the discussion that
we are having, they are too restrictive (the question of sequences of subsets of R?,
for example, would still not be resolved). Instead, let’s reinterpret the expression
"lx —yl," where x and y are real numbers. Rather than thinking of it as the absolute
value of x minus y, think of it as the magnitude (or length) of the difference. Upon
reflection, this is precisely the distance between x and y. We do not need the concepts
of subtraction and magnitude to define distance. We just need a meaningful way to
define distance between these objects. That is, for example, we can say a sequence
of matrices (A,)>2, converges to a matrix B if, for all € > 0, there exists an N € Z
such that, for all n > N, we have that the distance between A, and B is less than

€. How do we define distance in a meaningful and useful way? We use something
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called a metric.

2.2 Brief Introduction to Metric Spaces

Definition 2.2.1. A metric on a set X is a function d : X x X — R satisfying, for
r,y,2 € X:

(i) d(z,y) =20,
(ii) d(z,y) = 0if and only if x = y,
(iii) d(z,y) = d(y,z), and

(iv) d(z,y) < d(z,2) 4+ d(z,y).

If X is a set and d is a metric on X, then we call the ordered pair (X, d) a metric

space.

Note that we think of the expression "d(x,y)" as the distance between x and y and it
is a perfectly healthy interpretation. In this light, the defining properties of a metric
make a lot of sense. Property (i) says that the distance between two objects should
be a nonnegative real number. I certainly cannot envision a scenario where negative
distance or complex-valued distance would make sense. Property (ii) says that the
distance between an object and itself should be zero and that the distance between
different objects should not be zero. Surely, some strange consequences would arise if
neither were the case. Property (iii) tells us that if we measure the distance from z to
y and then measure the distance from y to x, we should get the same thing. Lastly,
Property (iv) tells us, with a little thought, that the "shortest distance between two
points is a straight line." Or, said differently, while travelling from x to y, the fastest
route is to go straight from x to y. If we take a detour along the way to z then it

will make the trip longer (or possibly the same, if 2z was already on our way).
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Example 2.2.2. Let’s look at a few examples of metric spaces. We will see more

examples later in the notes.

(i)

(iii)

Let X = R and define d : R x R — R by d(z,y) = |x — y|. Then (R,d) is a
metric space. We call d the usual metric on R. More generally, let n € Z
and let X = R". Define d : R x R” — R by

n

d(T,y) = Z |2k — yil?

k=1

where T = (z1,29,...,2,) and § = (Y1,¥2,...,Yn). Here, we call d the usual
metric on R” or the Euclidean metric on R”. Note that this is the metric we
use in Euclidean geometry and multivariate calculus. Checking that d satisfies
Properties (i) through (iii) is trivial. Checking Property (iv) requires some

work, which we will omit at this time to avoid getting sidetracked.
Let X = R? and define d : R? x R? = R by
d((z1,22), (Y1,92)) = |21 — y1| + |w2 — y2l.

Then d is a metric on R? called the taxi-cab metric. Note that it is not the
same metric given in (i) above. The fact that d is a metric and is different from

the one given in (i) is a following exercise.

Let M, (R) be the set of all n x n matrices with real coefficients and define
d: M,(R) x M,(R) = R by

d((aij)ij=1, (bij)i=1) = max{|a;; — b| 14,5 =1,...,n}.
Then d is a metric on M, (R).

Proof. in class O
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(iv) Let X be any set and define d : X x X — R by

d(z. ) 0 ifx=y
xT,Y) =
Y 1 ifx#y

Then d is a metric on X.

Proof. in class ]

Exercise 2.2.3. Let d; be the taxi-cab metric on R? and let dy be the Euclidean

metric on R2.

(i) Prove d; is a metric on R%. Hint: You will need to use the triangle inequality
which states that, for all x,y,z € R, |z —y| < |z — 2|+ |2z — y|. You do not

need to prove the triangle inequality.
(ii) Give an example which shows that d; # do. That is, find (z1,23), (y1, y2) € R?
such that di((z1,22), (y1,92)) # da((z1, 22), (Y1,92))-

Exercise 2.2.4. Let (X, d) be a metric space. Let o € (0,00) and define a new
metric d, : X X X — R by d,(z,y) = ad(zx,y). Prove that (X,d,) is a metric space.

2.3 Sequences and Continuous Functions for Metric

Spaces

We can now examine the definitions of convergent sequences in metric spaces and

continuous functions between metric spaces.

Definition 2.3.1. Let (X, d) be a metric space and let (x,,)2%; be a sequence in X.
For z € X, we say the sequence (z,,)°, converges to z if, for all € > 0, there exists
N € Z, such that, for all n > N, we have d(x,,x) < e. We write x, — z, if the

. o d . . .
metric we're using is understood, or x,, — x to specify the metric being used.
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If we take X = R and d to be the usual metric on R then the above definition is

precisely the definition for a convergent sequence in our Calculus classes.

Exercise 2.3.2. Let X be a nonempty set and define d : X x X — R by

d(x,y) 0 ifr=y
xT,y) =
Y 1 ifz#y

Then d is a metric on X. Let (x,)22; be a sequence in X and x € X such that

n=1

Ty 9. . Prove that there exists N € Z such that z, = z for all n > N.

Now, let us look at the definition of a continuous function between two metric spaces.

Definition 2.3.3. Let (X, dy) and (Y,d;) be metric spaces and let f : (X, dy) —
(Y,d;). We say the function f is continuous at x if, for all ¢ > 0, there exists
d > 0 such that, if zp € X and dyo(z,z0) < 0, then di(f(z), f(zo)) <e. f AC X
and f is continuous at x for all x € A, then we say f is continuous on A. If f is

continuous on X, we often just say "f is continuous,”" meaning f is continuous on

its entire domain.

Again, if X = Y = R and dy = d; is the usual metric on R, then the definition
above is precisely the definition from our Calculus classes. Note that we write " f :
(X,dy) — (Y,dy)" instead of simply "f : X — Y" when discussing continuity since
it is important which metrics are being used. The importance is illustrated in the

following example.

Example 2.3.4. Consider the function f : R — R, where f(z) = z for all x € R.
Let dy be the usual metric on R and let d; be the metric defined by

d(z.y) 0 ife=y
x,Y) =
Y 1 ifz#y
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(i) The function f: (R,d;) — (R,dp) is continuous on R. Why? Fix an arbitrary
y € R. We will then show f is continuous at y. Let € > 0. Pick § = % Then, if
r € Rand dy(z,y) < = %, then we must have that d;(z,y) = 0 and so x = y.

Hence,
do(f(z), f(y)) = do(w,y) =0 < ¢

and so f is continuous at y. Since this holds for all y € R, we have that
f:(R,dy) — (R,dp) is continuous on R.

(ii) The function f : (R,dy) — (R, d;) is not continuous at y, for any y € R. Why?
Let ¢ = % Then, for any 6 > 0, find an = € R such that dy(z,y) < 0 but x #y
(we can take v =y + g, for example). Then, we have that dy(x,y) < 6 but

di(f(2), f(y) = dy(z,y) = 1 > % _

and so f: (R, dy) — (R, d;) is not continuous at y for any y € R.

2.4 From Metrics to Open Sets

As stated earlier, we will examine metric spaces in more detail later as there is still a
lot to discuss. The goal here is to find a way to generalize the concepts of convergent
sequences and continuous functions to sets of objects which do not have appropriate
metrics (as we've seen, we can always define a metric on a set but it might not have
the properties we like or it might not reflect the physical system we’re trying to
model). For example, suppose our set is R® and we want a sequence of functions
(fn)22, in R® to converge to some f € RE if and only if f,(z) — f(z), for all
x € R (using the usual metric). It can be proven that there exists no metric d on
RE such that (f,)°2, converges to a function f € R® with respect to d if and only
if fo(x) — f(x) for all z € R. But this is an important type of convergence! In

Real Analysis, we call such convergence pointwise convergence. So, once again,
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we need to reexamine the definitions at the beginning of the chapter to see if we can
find a way to generalize them to sequences in sets of objects which do not have a
metric as well as functions between sets of objects which do not have a metric. In
order to do this, we will have to find equivalent statements to both definitions first.

This will involve the concepts of open and closed sets.
Definition 2.4.1. Let (X, d) be a metric space and let x € X. For r > 0, we define
the open ball centered at x with radius r to be the set
By(z,r) ={y € X : d(z,y) <r}.
Example 2.4.2. (i) If d is the usual metric on R, then B4(0,5) = (—5,5) and
Bd(47 1) = (37 5)

(i) If d is the usual metric on R?, then By((1,2),1) is the open disk centered at
(1,2) with radius 1.

(iii) If d is the taxicab metric on R?, then B,((0,0), 1) is an open square with vertices
(1,0), (0,1), (—1,0), and (0, —1).

(iv) If X is any nonempty set and d is the metric where d(z,y) = 0 if z = y and
d(z,y) = 1if z # y, then, for any = € X, By(z, 1) = {z}, while By(z,2) = X.

Definition 2.4.3. Let (X, d) be a metric space. We say a subset O C X is open
if, for all = € O, there exists r > 0 such that By(z,r) C O. Note that this definition

implies () and X are open sets.

Exercise 2.4.4. Let (X, d) be a metric space. Let z € X and r > 0. Prove that
By(z,r) is an open set. Hint: Let y € By(x,r). Find ro > 0 such that Ba(y,1m0) C
Bd<l’,7')-

Exercise 2.4.5. Let d be the usual metric on R. Let a,b € R, where a < b.

(i) Prove the interval (a,b) is an open set.
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(ii) Prove the interval [a,b) is not an open set.
(iii) Prove the interval (a,b] is not an open set.

(iv) Prove the interval [a, b] is not an open set.

Theorem 2.4.6. Let (X, d) be a metric space.

(i) Let I be an index set and suppose O; is an open set, for all i € I. Then U;c;O;

1S an open Set.

(ii) Let n € Z. and suppose Oy1,0q,...,0, are open sets. Then NI'_,0; is an open

set.

Proof. To prove (i), let I be an index set and suppose O; is open, for all i € I. Let
T € UierO;. Then there exists k& € I such that x € O,. Since Oy, is open, there exists
r > 0 such that By(z,r) C Of. Then

By(z,7) € O C U;esO;

and so U;c70; is open.

To prove (ii), let n € Z, and suppose O, Os, ..., O, are open sets. Let x € N, 0;.

Then x € O; for all + = 1,2,...,n. Since each O; is open, there exists r; > 0 such
that By(z,r;) € O;. Let r = max{ry,ro,...,7,}. Then, for each i = 1,2,... n, we
have By(x,r) C By(z,r;) C O; and so By(z,r) C N, 0;. O

Exercise 2.4.7. Let d be the usual metric on R. Give an example of open sets

01,04, ... such that N, 0; is not open.

It is worth noting here that if (X, d) is a metric space and O is an open subset of X

then O can always be written as a union of elements from the set

B ={By(z,r):x € X and r > 0}.
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Indeed, for = € O, since O is open, there exists r, > 0 such that By(x,r,) C O.
Then O = UgepBy(w,7,). Since every open set in X can be written as a union of
elements from B, we call B a base for the topology on X and call the elements

of B basic open sets.

Now, let us revisit our definitions for convergent sequences in metric spaces and
continuous functions between metric spaces. First, we can rewrite both definitions
using our new notation. We will present the equivalent definitions as theorems to

avoid confusion.

Theorem 2.4.8. Let (X, d) be a metric space. A sequence (x,)5%, in X converges
to x € X if and only if, for all e > 0, there exists N € Z such that, if n > N, then
Ty € By(z,€).

Proof. The proof is obvious since z,, € By(z,€) if and only if d(z,,z) < e. ]

Theorem 2.4.9. Let (X,dy) and (Y,dy) be metric spaces and let f : (X, dy) —
(Y,dy). The function f is continuous at x, for some x € X, if and only if, for
all € > 0, there exists 6 > 0 such that, f(Bg,(z,9)) C By, (f(x),€). Further, the

function f is continuous if, for all x € X and for all e > 0, there exists 6, such that

f(Bdo (I’ 59&76)) C Bd1 (f((ﬂ), 6)'

Now, let’s examine some other equivalent definitions for convergent sequences and

continuous functions for metric spaces.

Theorem 2.4.10. Let (X,d) be a metric space. A sequence (x,)°2, in X converges
to x € X if and only if, for all open sets O such that x € O, there exists N € Z
such that, if n > N, then x,, € O.

Proof. For the forward direction, let O be an open set such that z € O. Since O is
open, there exists € > 0 such that By(z,€) C O. Since z, LN x, there exists N € Z
such that, for all n > N, we have that x,, C By(z,¢) C O.
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For the other direction, we assume that for all open sets O, such that x € O, there
exists N € Z, such that, for all n > N, we have x,, € O. Let € > 0. Since By(z,€) is
an open set, we can find N € Z, such that, for all n > N, we have z,, € By(z,¢). O

Theorem 2.4.11. Let (X,dy) and (Y,dy) be metric spaces and let f : (X,dy) —
(Y,dy). The function f is continuous at x, for some x € X, if and only if, for every
open subset O of Y such that f(x) € O, there exists an open subset U, o of X such

that f(Uy o) C O. The function f is continuous if and only if, for every open subset
O of Y, f71(O) is an open subset of X.

Proof. To prove the forward direction of the first statement, let O be an open set in
Y such that f(x) € O. Since O is open, there exists ¢ > 0 such that By, (f(x),€) C
O. Since f is continuous at z, there exists d,, > 0 such that f(Bg,(z,0..)) C
By, (f(z),€) € O and note that By, (x,0,.) is open so let Uy = By, (x, 0z.¢)-

For the other direction of the first statement, we know that By, (f(x),€) is open. So,
there exists an open set U, . containing x such that f(U,.) € By (f(x),€). Since
Uge is open and z € U,,, there exists § > 0 such that By, (z,6) C U,.. Then,
f(Bay(z,96)) C f(Ure) € O. Hence, f is continuous at x.

For the forward direction of the second statement, suppose f is continuous on X.
Let O be an open set in Y. Since f is continuous on X, f is continuous at z, for all
z € f71(O). Hence, for each z € f~1(0), there exists an open set U, o containing =
such that f(U, o) € O. Since

f_l(O) = U U:c7O

zef~1(0)
which is a union of open sets, we have that f~1(O) is open.

For the other direction of the second statement, let x € X. Let O be an open subset

of Y such that f(z) € O. By our assumption f~1(O) is an open subset of X. Since
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r € X and f(f~1(O) C O, by the first statement we have that f is continuous at z.

Since this is true for all x € X, we then have that f is continuous on X. O]

Notice that the statements in both theorems above no longer require a metric but
rather open sets. It is true that we used metrics to define open sets but we don’t have
to. Recall at the beginning of the chapter when we decided that we did not need
subtraction and absolute values to define distance if we just "skipped ahead" and
defined distance directly. We can do the same thing here. We do not need metrics
to define open sets. We can just skip ahead and define the open sets directly. This

jump in abstraction is how we arrive at topological spaces.
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