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4 CHAPTER 2. BRIDGING THE GAP

2.1 Need for Distance

In this chapter, we will discuss the motivations for de�ning metric spaces along with

examining some basic concepts, properties, and examples of metric spaces. We do

so, at this stage, to then motivate the more general concept of topological spaces

which is the topic of this course. We will revisit metric spaces later in the notes,

once we have a su�cient background in topology.

Starting in the late 1800s, especially due to the new (at the time) set-theoretic

approach to mathematics, it became increasingly necessary to have a rigourous way

to do "calculus-type stu�" with sets of objects not from Rn, and with functions

whose domains and codomains contain objects not from Rn. For example, you may

have learned in a di�erential equations course how to solve a system of di�erential

equations using a series of the form
∑∞

n=1An where An is a k × k matrix. But how

do we actually de�ne this series? Obviously, it is the limit of the sequence of partial

sums but the sequence of partial sums is a sequence of k × k matrices. Also note

that the limit is a k × k matrix. In fractal geometry, we are interested in de�ning

the limits of sequences of subsets of Rn which turn out to be useful in processing

images on computers. How do we de�ne the limit in a way which makes sense? Also

in a di�erential equations class or possibly in a linear algebra class, you may have

discussed di�erentiation as a function. More precisely, we can think of di�erentiation

as a function D : A → B where A is a set of di�erentiable functions on some domain

and B is a set of functions with a certain domain, possibly having other properties.

Continuous functions, as we all know, have very nice properties. Perhaps we want

to know if D has some of these properties. Is D continuous? What does that even

mean?

We learned in our Calculus classes the importance of the concepts of convergent

sequences and continuous functions. These are by no means the only important

concepts but we will focus on these two in order to illustrate the need for metric
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spaces and, later, topological spaces. Let's �rst examine the de�nitions of convergent

sequences and continuous functions from Calculus.

De�nition 2.1.1. Let (xn)
∞
n=1 be a real-valued sequence. We say that (xn)

∞
n=1

converges if there exists L ∈ R such that for all ϵ > 0, there exists N ∈ Z+

such that, for all n ≥ N , we have |xn−L| < ϵ. In this case we say (xn)
∞
n=1 converges

to L and write xn → L.

De�nition 2.1.2. Let A be a set and let f : A → R. For x ∈ A we say f is

continuous at x if, for all ϵ > 0, there exists δ > 0 such that if y ∈ A and

|x− y| < δ, then |f(x)− f(y)| < ϵ. If f is continuous at x for all x ∈ A, then we say

f is continuous on A or, since A is the domain of f , we simply say f is continuous.

Let's examine the de�nitions above and think about whether or not they apply

to some more general sequences or functions. For example, does the de�nition for

a convergent sequence work if we have a sequence of k × k matrices instead of a

sequence of real numbers? Let's see what it would look like.

Fake De�nition: Let (An)
∞
n=1 be a sequence of k × k matrices. We say (An)

∞
n=1

converges if there exists a k×k matrix B such that for all ϵ > 0, there exists N ∈ Z+

such that, for all n ≥ N , we have |An −B| < ϵ.

Does it work? The problem here is the expression "|An−B| < ϵ." Given k×k matrices

An and B, certainly An−B makes sense. We learn how to subtract matrices in Linear

Algebra. But what is the absolute value of a matrix? Of course, we could de�ne it

to be anything we want, as long as the end result is a real number so that the "< ϵ"

part still works. But how do we do it in a way that makes sense and gives us the

limits that we want?

Let's instead think about the same de�nition but with a sequence of subsets from

R2.
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Fake De�nition: Let (Cn)
∞
n=1 be a sequence of subsets of R2. We say (Cn)

∞
n=1 con-

verges if there exists a subset B of R2 such that for all ϵ > 0, there exists N ∈ Z+

such that, for all n ≥ N , we have that |Cn −B| < ϵ.

The problem here is again the inequality that shows up at the end, namely, "|Cn −
B| < ϵ." Again, we do not have a clear way to de�ne the absolute value of a subset

of R2 but we also do not have a relevant concept of substraction between two subsets

of R2 either.

If we examine the de�nition of a continuous function f and try to replace A ⊆ R and

R with generic sets, we will see that we run into precisely the same sort of issues.

How do we make sense of "|x− y| < δ" and "|f(x)− f(y)| < ϵ?"

It seems that, in order for the de�nition of a convergent sequence of real numbers to

make sense for sequences of objects converging to other objects or for the de�nition

of a continuous function to make sense between sets of generic objects, we need the

set of those objects to have an algebraic structure where subtraction is de�ned as

well as an absolute value which associates one of these objects to a nonnegative

number. If we follow this path, it will lead us to the study of mathematical objects

called normed vector spaces. While they are certainly related to the discussion that

we are having, they are too restrictive (the question of sequences of subsets of R2,

for example, would still not be resolved). Instead, let's reinterpret the expression

"|x−y|," where x and y are real numbers. Rather than thinking of it as the absolute

value of x minus y, think of it as the magnitude (or length) of the di�erence. Upon

re�ection, this is precisely the distance between x and y. We do not need the concepts

of subtraction and magnitude to de�ne distance. We just need a meaningful way to

de�ne distance between these objects. That is, for example, we can say a sequence

of matrices (An)
∞
n=1 converges to a matrix B if, for all ϵ > 0, there exists an N ∈ Z+

such that, for all n ≥ N , we have that the distance between An and B is less than

ϵ. How do we de�ne distance in a meaningful and useful way? We use something
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called a metric.

2.2 Brief Introduction to Metric Spaces

De�nition 2.2.1. A metric on a set X is a function d : X ×X → R satisfying, for

x, y, z ∈ X:

(i) d(x, y) ≥ 0,

(ii) d(x, y) = 0 if and only if x = y,

(iii) d(x, y) = d(y, x), and

(iv) d(x, y) ≤ d(x, z) + d(z, y).

If X is a set and d is a metric on X, then we call the ordered pair (X, d) a metric

space.

Note that we think of the expression "d(x, y)" as the distance between x and y and it

is a perfectly healthy interpretation. In this light, the de�ning properties of a metric

make a lot of sense. Property (i) says that the distance between two objects should

be a nonnegative real number. I certainly cannot envision a scenario where negative

distance or complex-valued distance would make sense. Property (ii) says that the

distance between an object and itself should be zero and that the distance between

di�erent objects should not be zero. Surely, some strange consequences would arise if

neither were the case. Property (iii) tells us that if we measure the distance from x to

y and then measure the distance from y to x, we should get the same thing. Lastly,

Property (iv) tells us, with a little thought, that the "shortest distance between two

points is a straight line." Or, said di�erently, while travelling from x to y, the fastest

route is to go straight from x to y. If we take a detour along the way to z then it

will make the trip longer (or possibly the same, if z was already on our way).
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Example 2.2.2. Let's look at a few examples of metric spaces. We will see more

examples later in the notes.

(i) Let X = R and de�ne d : R × R → R by d(x, y) = |x − y|. Then (R, d) is a
metric space. We call d the usual metric on R. More generally, let n ∈ Z+

and let X = Rn. De�ne d : Rn × Rn → R by

d(x, y) =

√√√√ n∑
k=1

|xk − yk|2

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). Here, we call d the usual

metric on Rn or the Euclidean metric on Rn. Note that this is the metric we

use in Euclidean geometry and multivariate calculus. Checking that d satis�es

Properties (i) through (iii) is trivial. Checking Property (iv) requires some

work, which we will omit at this time to avoid getting sidetracked.

(ii) Let X = R2 and de�ne d : R2 × R2 → R by

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|.

Then d is a metric on R2 called the taxi-cab metric. Note that it is not the

same metric given in (i) above. The fact that d is a metric and is di�erent from

the one given in (i) is a following exercise.

(iii) Let Mn(R) be the set of all n × n matrices with real coe�cients and de�ne

d : Mn(R)×Mn(R) → R by

d((aij)
n
i,j=1, (bij)

n
i,j=1) = max{|aij − bij| : i, j = 1, . . . , n}.

Then d is a metric on Mn(R).

Proof. in class
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(iv) Let X be any set and de�ne d : X ×X → R by

d(x, y) =

{
0 if x = y

1 if x ̸= y
.

Then d is a metric on X.

Proof. in class

Exercise 2.2.3. Let d1 be the taxi-cab metric on R2 and let d2 be the Euclidean

metric on R2.

(i) Prove d1 is a metric on R2.Hint: You will need to use the triangle inequality

which states that, for all x, y, z ∈ R, |x − y| ≤ |x − z| + |z − y|. You do not

need to prove the triangle inequality.

(ii) Give an example which shows that d1 ̸= d2. That is, �nd (x1, x2), (y1, y2) ∈ R2

such that d1((x1, x2), (y1, y2)) ̸= d2((x1, x2), (y1, y2)).

Exercise 2.2.4. Let (X, d) be a metric space. Let α ∈ (0,∞) and de�ne a new

metric dα : X ×X → R by dα(x, y) = αd(x, y). Prove that (X, dα) is a metric space.

2.3 Sequences and Continuous Functions for Metric

Spaces

We can now examine the de�nitions of convergent sequences in metric spaces and

continuous functions between metric spaces.

De�nition 2.3.1. Let (X, d) be a metric space and let (xn)
∞
n=1 be a sequence in X.

For x ∈ X, we say the sequence (xn)
∞
n=1 converges to x if, for all ϵ > 0, there exists

N ∈ Z+ such that, for all n ≥ N , we have d(xn, x) < ϵ. We write xn → x, if the

metric we're using is understood, or xn
d−→ x to specify the metric being used.
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If we take X = R and d to be the usual metric on R then the above de�nition is

precisely the de�nition for a convergent sequence in our Calculus classes.

Exercise 2.3.2. Let X be a nonempty set and de�ne d : X ×X → R by

d(x, y) =

{
0 if x = y

1 if x ̸= y
.

Then d is a metric on X. Let (xn)
∞
n=1 be a sequence in X and x ∈ X such that

xn
d−→ x. Prove that there exists N ∈ Z+ such that xn = x for all n ≥ N .

Now, let us look at the de�nition of a continuous function between two metric spaces.

De�nition 2.3.3. Let (X, d0) and (Y, d1) be metric spaces and let f : (X, d0) →
(Y, d1). We say the function f is continuous at x if, for all ϵ > 0, there exists

δ > 0 such that, if x0 ∈ X and d0(x, x0) < δ, then d1(f(x), f(x0)) < ϵ. If A ⊆ X

and f is continuous at x for all x ∈ A, then we say f is continuous on A. If f is

continuous on X, we often just say "f is continuous," meaning f is continuous on

its entire domain.

Again, if X = Y = R and d0 = d1 is the usual metric on R, then the de�nition

above is precisely the de�nition from our Calculus classes. Note that we write "f :

(X, d0) → (Y, d1)" instead of simply "f : X → Y " when discussing continuity since

it is important which metrics are being used. The importance is illustrated in the

following example.

Example 2.3.4. Consider the function f : R → R, where f(x) = x for all x ∈ R.
Let d0 be the usual metric on R and let d1 be the metric de�ned by

d(x, y) =

{
0 if x = y

1 if x ̸= y
.
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(i) The function f : (R, d1) → (R, d0) is continuous on R. Why? Fix an arbitrary

y ∈ R. We will then show f is continuous at y. Let ϵ > 0. Pick δ = 1
2
. Then, if

x ∈ R and d1(x, y) < δ = 1
2
, then we must have that d1(x, y) = 0 and so x = y.

Hence,

d0(f(x), f(y)) = d0(x, y) = 0 < ϵ

and so f is continuous at y. Since this holds for all y ∈ R, we have that

f : (R, d1) → (R, d0) is continuous on R.

(ii) The function f : (R, d0) → (R, d1) is not continuous at y, for any y ∈ R. Why?

Let ϵ = 1
2
. Then, for any δ > 0, �nd an x ∈ R such that d0(x, y) < δ but x ̸= y

(we can take x = y + δ
2
, for example). Then, we have that d0(x, y) < δ but

d1(f(x), f(y)) = d1(x, y) = 1 >
1

2
= ϵ

and so f : (R, d0) → (R, d1) is not continuous at y for any y ∈ R.

2.4 From Metrics to Open Sets

As stated earlier, we will examine metric spaces in more detail later as there is still a

lot to discuss. The goal here is to �nd a way to generalize the concepts of convergent

sequences and continuous functions to sets of objects which do not have appropriate

metrics (as we've seen, we can always de�ne a metric on a set but it might not have

the properties we like or it might not re�ect the physical system we're trying to

model). For example, suppose our set is RR and we want a sequence of functions

(fn)
∞
n=1 in RR to converge to some f ∈ RR if and only if fn(x) → f(x), for all

x ∈ R (using the usual metric). It can be proven that there exists no metric d on

RR such that (fn)
∞
n=1 converges to a function f ∈ RR with respect to d if and only

if fn(x) → f(x) for all x ∈ R. But this is an important type of convergence! In

Real Analysis, we call such convergence pointwise convergence. So, once again,
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we need to reexamine the de�nitions at the beginning of the chapter to see if we can

�nd a way to generalize them to sequences in sets of objects which do not have a

metric as well as functions between sets of objects which do not have a metric. In

order to do this, we will have to �nd equivalent statements to both de�nitions �rst.

This will involve the concepts of open and closed sets.

De�nition 2.4.1. Let (X, d) be a metric space and let x ∈ X. For r > 0, we de�ne

the open ball centered at x with radius r to be the set

Bd(x, r) = {y ∈ X : d(x, y) < r}.

Example 2.4.2. (i) If d is the usual metric on R, then Bd(0, 5) = (−5, 5) and

Bd(4, 1) = (3, 5).

(ii) If d is the usual metric on R2, then Bd((1, 2), 1) is the open disk centered at

(1, 2) with radius 1.

(iii) If d is the taxicab metric on R2, then Bd((0, 0), 1) is an open square with vertices

(1, 0), (0, 1), (−1, 0), and (0,−1).

(iv) If X is any nonempty set and d is the metric where d(x, y) = 0 if x = y and

d(x, y) = 1 if x ̸= y, then, for any x ∈ X, Bd(x,
1
2
) = {x}, while Bd(x, 2) = X.

De�nition 2.4.3. Let (X, d) be a metric space. We say a subset O ⊆ X is open

if, for all x ∈ O, there exists r > 0 such that Bd(x, r) ⊆ O. Note that this de�nition

implies ∅ and X are open sets.

Exercise 2.4.4. Let (X, d) be a metric space. Let x ∈ X and r > 0. Prove that

Bd(x, r) is an open set. Hint: Let y ∈ Bd(x, r). Find r0 > 0 such that Bd(y, r0) ⊆
Bd(x, r).

Exercise 2.4.5. Let d be the usual metric on R. Let a, b ∈ R, where a < b.

(i) Prove the interval (a, b) is an open set.



2.4. FROM METRICS TO OPEN SETS 13

(ii) Prove the interval [a, b) is not an open set.

(iii) Prove the interval (a, b] is not an open set.

(iv) Prove the interval [a, b] is not an open set.

Theorem 2.4.6. Let (X, d) be a metric space.

(i) Let I be an index set and suppose Oi is an open set, for all i ∈ I. Then ∪i∈IOi

is an open set.

(ii) Let n ∈ Z+ and suppose O1, O2, . . . , On are open sets. Then ∩n
i=1Oi is an open

set.

Proof. To prove (i), let I be an index set and suppose Oi is open, for all i ∈ I. Let

x ∈ ∪i∈IOi. Then there exists k ∈ I such that x ∈ Ok. Since Ok is open, there exists

r > 0 such that Bd(x, r) ⊆ Ok. Then

Bd(x, r) ⊆ Ok ⊆ ∪i∈IOi

and so ∪i∈IOi is open.

To prove (ii), let n ∈ Z+ and suppose O1, O2, . . . , On are open sets. Let x ∈ ∩n
i=1Oi.

Then x ∈ Oi for all i = 1, 2, . . . , n. Since each Oi is open, there exists ri > 0 such

that Bd(x, ri) ⊆ Oi. Let r = max{r1, r2, . . . , rn}. Then, for each i = 1, 2, . . . , n, we

have Bd(x, r) ⊆ Bd(x, ri) ⊆ Oi and so Bd(x, r) ⊆ ∩n
i=1Oi.

Exercise 2.4.7. Let d be the usual metric on R. Give an example of open sets

O1, O2, . . . such that ∩∞
i=1Oi is not open.

It is worth noting here that if (X, d) is a metric space and O is an open subset of X

then O can always be written as a union of elements from the set

B = {Bd(x, r) : x ∈ X and r > 0}.
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Indeed, for x ∈ O, since O is open, there exists rx > 0 such that Bd(x, rx) ⊆ O.

Then O = ∪x∈OBd(x, rx). Since every open set in X can be written as a union of

elements from B, we call B a base for the topology on X and call the elements

of B basic open sets.

Now, let us revisit our de�nitions for convergent sequences in metric spaces and

continuous functions between metric spaces. First, we can rewrite both de�nitions

using our new notation. We will present the equivalent de�nitions as theorems to

avoid confusion.

Theorem 2.4.8. Let (X, d) be a metric space. A sequence (xn)
∞
n=1 in X converges

to x ∈ X if and only if, for all ϵ > 0, there exists N ∈ Z+ such that, if n ≥ N , then

xn ∈ Bd(x, ϵ).

Proof. The proof is obvious since xn ∈ Bd(x, ϵ) if and only if d(xn, x) < ϵ.

Theorem 2.4.9. Let (X, d0) and (Y, d1) be metric spaces and let f : (X, d0) →
(Y, d1). The function f is continuous at x, for some x ∈ X, if and only if, for

all ϵ > 0, there exists δ > 0 such that, f(Bd0(x, δ)) ⊆ Bd1(f(x), ϵ). Further, the

function f is continuous if, for all x ∈ X and for all ϵ > 0, there exists δx,ϵ such that

f(Bd0(x, δx,ϵ)) ⊆ Bd1(f(x), ϵ).

Now, let's examine some other equivalent de�nitions for convergent sequences and

continuous functions for metric spaces.

Theorem 2.4.10. Let (X, d) be a metric space. A sequence (xn)
∞
n=1 in X converges

to x ∈ X if and only if, for all open sets O such that x ∈ O, there exists N ∈ Z+

such that, if n ≥ N , then xn ∈ O.

Proof. For the forward direction, let O be an open set such that x ∈ O. Since O is

open, there exists ϵ > 0 such that Bd(x, ϵ) ⊆ O. Since xn
d−→ x, there exists N ∈ Z+

such that, for all n ≥ N , we have that xn ⊆ Bd(x, ϵ) ⊆ O.
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For the other direction, we assume that for all open sets O, such that x ∈ O, there

exists N ∈ Z+ such that, for all n ≥ N , we have xn ∈ O. Let ϵ > 0. Since Bd(x, ϵ) is

an open set, we can �nd N ∈ Z+ such that, for all n ≥ N , we have xn ∈ Bd(x, ϵ).

Theorem 2.4.11. Let (X, d0) and (Y, d1) be metric spaces and let f : (X, d0) →
(Y, d1). The function f is continuous at x, for some x ∈ X, if and only if, for every

open subset O of Y such that f(x) ∈ O, there exists an open subset Ux,O of X such

that f(Ux,O) ⊆ O. The function f is continuous if and only if, for every open subset

O of Y , f−1(O) is an open subset of X.

Proof. To prove the forward direction of the �rst statement, let O be an open set in

Y such that f(x) ∈ O. Since O is open, there exists ϵ > 0 such that Bd1(f(x), ϵ) ⊆
O. Since f is continuous at x, there exists δx,ϵ > 0 such that f(Bd0(x, δx,ϵ)) ⊆
Bd1(f(x), ϵ) ⊆ O and note that Bd0(x, δx,ϵ) is open so let Ux,ϵ = Bd0(x, δx,ϵ).

For the other direction of the �rst statement, we know that Bd1(f(x), ϵ) is open. So,

there exists an open set Ux,ϵ containing x such that f(Ux,ϵ) ⊆ Bd1(f(x), ϵ). Since

Ux,ϵ is open and x ∈ Ux,ϵ, there exists δ > 0 such that Bd0(x, δ) ⊆ Ux,ϵ. Then,

f(Bd0(x, δ)) ⊆ f(Ux,ϵ) ⊆ O. Hence, f is continuous at x.

For the forward direction of the second statement, suppose f is continuous on X.

Let O be an open set in Y . Since f is continuous on X, f is continuous at x, for all

x ∈ f−1(O). Hence, for each x ∈ f−1(O), there exists an open set Ux,O containing x

such that f(Ux,O) ⊆ O. Since

f−1(O) =
⋃

x∈f−1(O)

Ux,O

which is a union of open sets, we have that f−1(O) is open.

For the other direction of the second statement, let x ∈ X. Let O be an open subset

of Y such that f(x) ∈ O. By our assumption f−1(O) is an open subset of X. Since
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x ∈ X and f(f−1(O) ⊆ O, by the �rst statement we have that f is continuous at x.

Since this is true for all x ∈ X, we then have that f is continuous on X.

Notice that the statements in both theorems above no longer require a metric but

rather open sets. It is true that we used metrics to de�ne open sets but we don't have

to. Recall at the beginning of the chapter when we decided that we did not need

subtraction and absolute values to de�ne distance if we just "skipped ahead" and

de�ned distance directly. We can do the same thing here. We do not need metrics

to de�ne open sets. We can just skip ahead and de�ne the open sets directly. This

jump in abstraction is how we arrive at topological spaces.
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