MATH 422-Introduction to Topology

Matthew Ziemke

January 27, 2026



i



Contents

1 Preliminaries 1
1.1 Sets . . . o 2
1.2 Relations. . . . . .. ..o L 7
1.3 Functions . . . . . . . . L 9
1.4 Cardinality . . . . . . . .. 12
1.5 Axiom of Choice . . . . . . . .. . ... .. 17
1.6 Products of Sets Revisited . . . . . . . . .. ... .. ... ... 19

iii



iv

CONTENTS



Chapter 1

Preliminaries



2 CHAPTER 1. PRELIMINARIES

1.1 Sets

Definition 1.1.1. A set is a collection of objects. A set is only concerned with
membership. That is, a set’s only concern is whether an object is a member of the
set or not. If A is a set and x is an object, we say x is an element of A if  is a
member of A and write x € A. If z is not a member of A, then we say x is not an
element of A and write © ¢ A. The set with no elements is called the empty set
and is denoted by 0.

The above definition of a set will be satisfactory for us in these notes but it should
be stated that, in general, we need to be more careful about how we define sets or

else we run into issues. For example, examine the following exercise.

Exercise 1.1.2. (Russell’s Paradox) Obviously, there are many examples of sets
which do not contain themselves (take, for example A = {1,2,3}). First, convince
yourself that it is possible for a set to contain itself. That is, provide an example
of a set B such that B € B. Next, consider the set R of all sets which do not
contain themselves (the example A above would be an element of R). Explain why

the question, "Is R € R?" does not have a satisfactory answer.

To avoid such paradoxes, we have developed a set of axioms, or rules that must
be followed, when defining sets called the Zermelo-Fraenkel Axioms (or ZF Axioms).
When we also include another axiom called the Axiom of Choice (more on this later),
then they are referred to as the ZFC Axioms. Since we will not need to be so careful
with how we define sets, we will not examine the ZF axioms. We will, however,

discuss the Axiom of Choice later.

Definition 1.1.3. Let A and B be sets. We say A is a subset of B, and write
A C B, if every element of A is also an element of B. If A C B and B C A, then we
say A equals B, and write A = B.
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The above definition tells us that two sets are equal precisely when they have the
exact same elements. It also solidifies the idea that sets are only concerned with
membership and that added structure is needed if we wish to consider concepts such
as order or repetition. For example, {1,1,2,2} = {1,2} since every element on the
lefthand set is an element on the right, while every element in the righthand set is
an element on the left. And so, sets do not care about repetition. For this reason,
we would never actually write something like {1, 1,2,2} since it is confusing and a
waste of time. Similarly, sets do not care about order since {1,2} = {2,1}. Our

most commonly used sets of numbers have standard notation given below:

(i) the set of all natural numbers, that is, the set of all nonnegative integers, is
denoted by N,

(ii) the set of all integers is denoted by Z,

(iii) the set of all positive integers less than or equal to m, where n is a positive

integer, is denoted by Z,,
(iv) the set of all rational numbers is denoted by Q,
(v) the set of all real numbers is denoted by R, and

(vi) the set of all complex numbers is denoted by C.

We will denote the set of all positive integers by Z,. Given a set A, we define the
power set of A, denoted by P(A) to be the set of all subsets of A.

Definition 1.1.4. Let A and B be sets. The union of A and B, denoted AU B, is
the set of all objects x such that x € A or # € B (or both). The intersection of A
and B, denoted A N B, is the set of all objects x such that x € A and x € B. We
say the sets A and B are disjoint if AN B = (). The set A minus B, or A throw
away B, denoted by A\ B, is the set of all objects in A that are not in B. Although

usually implicitly understood, often times we need to specify the universal set, or
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all the objects under consideration. This is especially true if we want to consider the
complement of a set. That is, the complement of the set A, denoted by A€, is the

set of all object in the universal set that are not elements of A.

A couple of things worth noting here. First, the "or both" included in the definition
of the union of two sets is not actually needed since "or" is always the inclusive
"or" in mathematics. Second, we usually do not specify the universal set since it is
contextually obvious in most cases. Nevertheless, it is technically needed to have a
rigorous definition for the complement of a set. For example, if A is the set of all
positive even integers, then most of us would consider A€ to be the set of all positive
odd integers. This assumes though that the universal set is the set of positive integers.
Without specifying the universal set, we could also have that v/2 € A¢ or —7 € A°.

We often refer to union, intersection, and throwaway as rank-2 operations as they give
us a way to produce one set from two. For these reasons, we borrow language from
algebra to say that unions and intersections are commutative, meaning AUB = BUA
and AN B = BN A, as well as associative, i.e., AU(BUC) = (AU B)UC and
AN(BNC) = (AN B)NC. In the next definition, we extend our definitions of

unions and intersections to collections of sets.

Definition 1.1.5. Let [ be an index set and let A; be a set for all 7 € I. Then
UA" = {z|x € A; for some i € I}
iel

and
ﬂAi:{x]xeAi for all i € I}.

el

If the index set [ is finite, say [ has n elements, then there is no harm in assuming

I={1,2,...,n} and we often write

U&:mu@umum

icl
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and
(Ai=ANAN--NA,
iel
Example 1.1.6. Let A, = [+, 1] for all n € Z,, where [a,b] = {z € R|la < z < b}.
Then,
U A= (-1,1)
neZly
while

M A. = {0}.

nEZ+

Exercise 1.1.7. (DeMorgan’s Laws)

(a) Let A and B be sets. Prove that (AU B)° = A°N B° and (AN B)¢ = A°U B“.

(b) Let I be an index set and let A; be a set, for all ¢ € I. Prove that

(UA,»)C:HA;? and (ﬂAZ)C:UAf.

el el el iel

Hint: Prove all of the set equalities above by "set inclusion.” That is, to show sets
A and B are equal, show A C B and B C A. To do this, prove two statements: if
x €A, thenx € B; if v € B, then x € A.

Definition 1.1.8. Given two sets A and B, the Cartesian product of A and B,
denoted by A x B, is the set of all ordered pairs (a,b) such that a« € A and b € B.

Note that we call ordered pairs "ordered" pairs because we care about the order. We
say (a,b) = (¢,d) if and only if @ = ¢ and b = d. For this reason, (1,2) # (2,1).The
reader is probably most familiar with the Cartesian product R x R, which we typi-
cally denote by R?, and visualize as the Cartesian plane. Perhaps some of the readers

have taken a graph theory class or combinatorics class where you studied Z x Z and
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referred to it as the "integer lattice." There is nothing preventing us from taking
Cartesian products of completely different sets though. For example, Z x R would
be the set of all ordered pairs whose first coordinate is an integer while the second
coordinate is any real number. Notice though that Z x R # R x Z and so the Carte-

sian product is not, in general, commutative.

Continuing in this fashion, for n € Z, and sets A, As,..., A, we define A; x Ay X
-+ x A, to be the set of all n-tuples (a1, as,...,a,) where a; € A; fori =1,... n.
If A= A; fori =1,...,n, then we often write A; x Ay x --- x A, = A" and so,
for example, R x R x R = R3. Note that technically, R? # R x R? # R? x R since
the elements of R? are ordered triples while the elements of R x R? and R? x R are
ordered pairs where one of their coordinates is also an ordered pair (for example,
elements of R x R? look like (a, (b, c))). Nevertheless, we often write things such as
R3 = R x R? since both sets are made up of ordered 3-element subsets of R and are
essentially the same thing. We will return to discussing Cartesian products in a later

section.

One common mistake students often make when first learning about Cartesian prod-

ucts is illustrated in the next exercise.

Exercise 1.1.9. Let A and B be sets.

(a) Let C € Aand D C B. Prove that C x D C A x B.

(b) Give an example of a set F such that F C Ax Bbut E # C x D forany C C A
and any D C B.

To be clear about the mistake the previous example is supposed to illuminate, often
times students will write things such as, "LLet £ C A x B. Then E = C' x D, for
some C' C A and some D C B." It should now be clear that this is not necessarily

true.
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1.2 Relations

Definition 1.2.1. We say a set R is a relation from the elements of a set A to the
elements of a set B if R C A x B. If (a,b) € R, then we often write aRb or a ~ b. If
R is a relation from the elements of a set A to the elements of the same set A then
we simply say that R is a relation on A. If R is a relation on a set A, we say the

relation is

(i) reflexive if aRa for all a € A,
(ii) symmetric if aRb whenever bRa, and

(iii) transitive if, whenever aRb and bRc, we have that aRc.

An example of a relation on R would be < where we say (a,b) € R if a < b. In this
case, R would not be reflexive or symmetric but it would be transitive. A different
relation on R would be = where (a,b) € R if a = b. In this case, R would be reflexive,

symmetric, and transitive.

Definition 1.2.2. A relation R on a set A is called an equivalence relation if R
is reflexive, symmetric, and transitive. In this case, we often write a = b instead of
aRb. If R is an equivalence relation on a set A then, for every a € A, we define the

equivalence class of a to be [a]| = {z € AlaRz}.

Exercise 1.2.3. Let R be an equivalence relation on a set A. Let a,b € A. Prove
that if aRD, then [a] = [b] and if (a,b) ¢ R, then [a] N [b] = 0.

Definition 1.2.4. We say a relation R on a set A is antisymmetric if, whenever

aRb and bRa, we must have that a = b.

Definition 1.2.5. We say a set A is a partially ordered set (or poset) if there

is a relation on A which is reflexive, transitive, and antisymmetric.
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An example of a partially ordered set would be P(N) where we say that, for A, B €
P(N), ARB if A C B. Notice here that not all of the elements of P(N) are compa-
rable with this relation. For example, if A = {1,2} and B = {1, 3} then A does not
relate to B and B does not relate to A. In otherwords, (A, B) ¢ R and (B, A) ¢ R.

This leads us to the next definition.

Definition 1.2.6. We say a set A is totally ordered if there is a relation R on A
which is reflexive, transitive, and antisymmetric such that, for all a,b € A, either
aRb or bRa (or both).

The set P(N) ordered by C is not a totally ordered set by the example given above.
An example of a totally ordered set would be R ordered by <. Obviously, this relation
is reflexive and transitive. It is antisymmetric since, for any a,b € R, if a < b and
b <a, then a =b.

Definition 1.2.7. Let A be a partially ordered set where we denote the relation by
<. We say an element ag € A is a minimal element of A if, a < ag implies a = ag
for any a € A. We say an element a; € A is a maximal element of A, if a; < a

implies a = a; for any a € A.

Note that minimal and maximal elements of a partially ordered set need not be

unique, as the next exercise asks the reader to verify.

Exercise 1.2.8. Give an example of a partially ordered set which has more than
one maximal element. That is, give an example of a partially ordered set A, along
with a partial order < on the set A, and provide two elements a,b € A such that a

and b are both maximal elements yet a # b.

Definition 1.2.9. Let A be a partially ordered set ordered by <. We say B C A
is a chain in A if B with the partial order < is a totally ordered set. We say an
element a € A is an upper bound for the chain B, if b < a for all b € B.
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For example, as we saw earlier, P(N) is a partially ordered set when it is ordered

using set-inclusion. It is not a totally ordered set. If we let

B={0,{1},{1,2},{1,2,3}}

then B is a chain in P(N) since all of the elements of B are comparable. We would
also say that the chain B has a maximal element {1,2,3}. So, while {1, 2,3} is not
a maximal element of P(N), it is a maximal element for the chain B. We would also
say that {1,2,3,4} € P(N) is an upper bound for the chain B. Note that upper

bounds of chains do not need to be elements of the chain.

1.3 Functions

Definition 1.3.1. Let A and B be sets. We say f C A x B is a function with

domain A and codomain B, and write f : A — B, if

(i) for all a € A, there exists b € B such that (a,b) € f, and

(i) if (a,b), (a,c) € f then b= c.

If (a,b) € f, then we often say that a maps to b. Also, if (a,b) € f then we often
write f(a) = b. Note that (i) above means that every element of A must map to
some element of B and (ii) means that no element of A can map to two different
elements of B. In our high school classes, we often present functions as rules which
tell us how to find the f(a) that @ maps to. We then define the graph of a function
f to be the set of all elements of the form (a, f(a)). Here, we make no distinction

between a function and its graph, thus eliminating a need for such a rule.

Definition 1.3.2. Let f: A — B be a function. We say f is injective or one-to-

one if (ag,b), (a1,b) € f implies ag = a;. We say f is surjective or onto if, for every
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b € B there exists a € A such that (a,b) € f. A function is said to be bijective if

it is injective and surjective.

Example 1.3.3. If we define f: N — N by f = {(a,a®)|a € N}, then f is injective
since (ag, b), (a1,b) € f implies that ag = v/b = a; but f is not surjective since 2 € N
yet there exists no a € N such that (a,2) € f.

Exercise 1.3.4. Give an example of a functionf : N — N which is surjective but

not injective.

Proposition 1.3.5. Let f : A — B and g: B — C. Define go f to be the set of all
elements (a,c) € A x C' such that there exists b € B where (a,b) € f and (b, c) € g.

Then go f is a function with domain A and codomain C.

Proof. First, we have to prove that for all a € A, there exists ¢ € C such that
(a,c) € go f. Let a € A. Since f is a function with domain A, there exists b € B
such that (a,b) € f. Since g is a function with domain B and b € B, there exists
¢ € C such that (b,c¢) € g. Then, by definition of g o f, we have that (a,c) € go f.

Next, we have to prove that if (a, ¢;), (a,c2) € gof, then ¢; = ¢o. Since (a, ¢1), (a, o) €
go f, there exists by, by € B such that (a,b,) € f and (b1, ¢1) € g and (a,by) € f and
(ba, c2) € g. Since (a,by), (a,by) € f and f is a function, we must have that by = b.
Then, we have that (b, c;), (b1, c2) € g. Since g is a function, we must have that
¢1 = ¢o. Therefore, go f: A — C. O

Exercise 1.3.6. et f: A—> Bandg: B — C.

(a) Prove that if f and g are injective, then g o f is injective.
(b) Prove that if f and g are surjective, then g o f is surjective.

(¢) Conclude that if f and g are bijective, then g o f is bijective.
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Remark 1.3.7. Given f: A — B and C C A, we define f(C) to be the subset of B
containing all b € B such that there exists ¢ € C such that (¢,b) € f. For D C B,
we define f~1(D) to be the subset of A containing all @ € A such that there exists
d € D so that (a,d) € f.

Consider the function f : N — N we considered earlier, where f(a) = a? for all

a € N. In this case,

f({1,2,3}) =1{1,4,9} , f'({3,4,16}) ={2,4} , and [f'({3,7,11}) =0.

Exercise 1.3.8. Let A and B be sets and let f : A — B. Let C;,Cy C A and
Dy, Dy, C B. Fill in the following blanks with either "C" "D" "= or "#£."

(i) f(C1UCy) f(C1) U f(Cy)
(i) f(C1NCy) — f(Ch) N f(Cy)
(iii) f(CY) f(Ch)°

(iv) f~'(D1 U Dy)

f7HDy) U fH(Dy)
(v) fTHDiNDy) — fH(Dy) N fH(Dy)
(vi) f7H(DY) fH(Dy)e

Definition 1.3.9. Let f: A — B. We define f~! to be the set of all (b,a) € B x A
such that (a,b) € f. If f~!is a function, then we say f is invertible .

Let f: A — B. If f is invertible, then f~! : B — A and f~(b) = a if and only if
f(a) =b. If f is not invertible, then you will often still see people write f~!(b) but
what they really mean is f~1({b}). To illustrate, consider the example of f : R — R
where f(a) = a® It is easy to see that f~! is not a function since, for example,

there exists no a € R such that (—1,a) € f~'. Hence, f is not invertible. On the
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otherhand, one will still see people write things like f~1(4) by which they actually
mean f1(4) = f71({4}) = {—2,2}. In light of this, f~1(0) = {0} and f~!(-1) = 0.

Proposition 1.3.10. Let f : A — B. The function f is invertible if and only if f

15 a bijective.

Proof. Suppose f is invertible. Then f~! = {(b,a) € B x A|(a,b) € f} is a function.
First, to show f is injective, suppose (a1,b), (as,b) € f. Then (b,a1),(b,as) € f~L.
Since f~! is a function, we must have that a; = a,. Hence, f is injective. Now, to
prove f is surjective, let b € B. Since f~! is a function, there exists a € A such that

(b,a) € f~1. Then (a,b) € f and so f is surjective. Hence, f is bijective.

For the other direction, suppose f is bijective. We first want to show that for all
b € B, there exists a € A such that (b,a) € f~!. Let b € B. Since f is surjective,
there exists a € A such that (a,b) € f. Hence, (b,a) € f~'. Next, we want to
show that if (b,a;), (b,az) € f~' then a3 = ay. Let (b,a1),(b,as) € f~'. Then
(a1,b), (ag,b) € f. Since f is injective, we have that a; = ay. Therefore, f~! is a

function. []

Exercise 1.3.11. Prove that if f : A — B and g : B — C are invertible, then g o f
is invertible and (go f)™' = flog™l.

1.4 Cardinality

Definition 1.4.1. Given a collection of sets C, define a relation = on C by A = B if
and only if there exists a bijection f : A — B. In this case, we say A has the same
cardinality as B and write card(A) = card(B) or |A| = |B|.

Proposition 1.4.2. Given a collection of sets C, the relation = defined above is an

equivalence relation.
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Proof. Let C be a collection of sets.
Let A€ C. Then f: A — A defined by f(a) = a is a bijection and so A = A.

Let A, B € C and suppose A = B. Then there exists a bijection f : A — B. Then,
f~': B — Ais a bijection and so B = A.

Let A,B,C € C and suppose A = B and B = C. Since A = B, there exists a
bijection f : A — B. Since B = C, there exists a bijection g : B — C. Then, by
Exercise 1.3.6, we have that go f: A — C'is a bijection and so A = C. O]

Definition 1.4.3. We say a set A is finite (or countably finite) if, for some
n € Z,, A has the same cardinality as Z, and we say the cardinality of A is n, or
write card(A) = |A| = n. We say a set A is countably infinite if it has the same
cardinality as N and we say the cardinality of A is Wy, or write card(A) = |A| = Ny.
If A is finite or countably infinite then we say A is countable. If A is not countable,
then we say A is uncountable. If A has the same cardinality as R, then we say the

cardinality of A is the continuum and write card(A) = |A| = c.

To avoid spending too much time on cardinality, we will assume the reader has
already examined the following statements and theorems in another course so we
will discuss them without proof. Obviously, if the reader is interested in seeing the
proofs of any of these theorems then the instructor can direct them to an appropriate

source.

The cardinalities of our most common sets are:

Zn| =n
IN| = |Z| = 1Q| =X

IR =|C| =¢
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From the above notation and terminology, one would assume that R and C are
uncountable (otherwise we would have no use for the symbol ¢) and indeed, this is

the case.

The fact that the cardinality relation forms an equivalence relation gives a very
common strategy for showing a set has a certain cardinality, say . That is, if we
want to show a set A has cardinality v, and we already know a set B has cardinality
v, then it is enough to show that there exists a bijection f : A — B or a bijection

g : B — A (thereis a bijection f : A — B if and only if there is a bijection g : B — A,
namely g = f71).
So, for example, if we want to show a set A is countably infinite, we have many

options. We could show that there is a bijection f : A — N, a bijection g : Q — A,

or a bijection h : A — 7Z, just to list a few possibilities.

Another useful theorem is the following:

Theorem 1.4.4. Let A and B be countable sets. Then AUB, ANB, and A x B

are countable.

Note that this theorem then extends to the following corollary:

Corollary 1.4.5. Let Ay, As, ..., A, be countable sets. Then

UAz , ﬂAz , A1XA2X'--XA”

1€ 1€

are all countable sels.

We do have to be careful with the above theorem and corollary when we are making
a distinction between countably finite and countably infinite. For example, it is
possible that A and B are countably infinite but A N B is countably finite. Also, if
A is countably finite and B is countably infinite then AU B and A x B would be

countably infinite.
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Another useful theorem is the following:

Theorem 1.4.6. Let A and B be sets where A C B. If B is countable, then A 1is

countable. On the otherhand, if A is uncountable then B is uncountable.

There is also a way to order our cardinalities. If A and B are sets and there exists

an injection f: A — B but no surjection g : A — B then we write |A| < |B].

With this notation, we then have
0<l<2<---<Nyg<c¢

if we think of 1,2,... as cardinalities rather than numbers.

This string of inequalities might raise several questions to an inquisitive reader and,
indeed, sparked a lot of interest among mathematicians back in the day. The first
line of questioning might be, "Does there exist a set A such that ¢ < |A|? If such a
set A exists, does there exist a set B so that |A| < |B|?" A second question might
be, "Can we find a set A such that Ry < |A] < ¢?"

To answer the first line of questioning, we have the following theorem due to Cantor.

Theorem 1.4.7. (Cantor’s Theorem) Let A be a set. Then |A| < |P(A)].

Proof. following exercise O]

Exercise 1.4.8. Prove Cantor’s Theorem. Hint: Clearly, we can define an injection
from a set A to P(A) (just map every element © € A to {x}). So, we just need
to show that there can be no surjection f : A — P(A). Do this by contradiction.
Suppose we have such a surjection f. Define X = {a € A : a ¢ f(a)}. Since
X € P(A) and f is a surjection, there exists ag € A such that f(a) = X. Now, ask

the question, "is ag € f(ag)?".
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Hence, from Cantor’s Theorem, we can see that
¢ = [R| <[P(R)| < |[P(P(R))| < [P(P(P(R)))| <---

and so we have our answer to the first line of questioning. Recall from combinatorics
the fact that if A is a set and |A| = n, then |P(A)| = 2". For this reason, you will
often see, even when A is countably infinite or uncountable, the cardinal number
2141 by which we mean 24l = |P(A)|. For example, 2% = |P(N)| = |P(A)| for any
countably infinite set A.

Perhaps Cantor’s Theorem also gives us an answer to our second question. That is,
we know from Cantor’s Theorem that Ry < 2% so we will have our answer if 2% < ¢.

Unfortunately, this is not the case as the next theorem shows.

Theorem 1.4.9.

oM — ¢

The second question, "Does there exist a set A such that Xy < |A| < ¢?" remained
an open question, called The Continuum Hypothesis, for quite a long time. To be
precise, the Continuum Hypothesis is the statement, "There is no set A such that
Ng < |A| < ¢." It was proposed by Cantor in the 1870s and it is worded this way

because Cantor believed that there was no cardinality strictly between Ny and c.

So, what is the answer? It’s complicated. To understand, we first need to discuss
Go6del’s Incompleteness Theorem. In 1931, Kurt Godel proved that, essentially,
given any "appropriate" axiomatic system, there will always be mathematical state-
ments which can’t be proven or disproven. While the theorem is remarkable, it was
definitely a cause for concern for mathematicians at the time. To be clear, it says
that no matter what list of axioms you start with (as long as it’s an appropriate one,
i.e., not self-contradictory, sufficiently large enough to include basic arithmetic, etc.)
there will always be questions we can’t answer or statements whose truth value we

cannot verify. We say such statements are "independent of the axioms." So, when
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confronted with a statement and deciding on its truth value, we don’t just have the
two possible answers of "true" and "false" but, rather, the three possible answers of

"true," "false," or "independent of the axioms."

At this point, the reader probably sees where this is going. It turns out, through
a proof given by Gdédel in the 1940s and another by Cohen in the 1960s, that the
Continuum Hypothesis is independent of the ZFC axioms. That is, starting with
the ZFC axioms of set theory, it is impossible to prove or disprove the Continuum
Hypothesis. When the Incompleteness Theorem was first published, the only ex-
amples of statements which were indepedent of a given axiomatic system, were not
particularly important ones and often even rather ridiculous. At the time, this gave
mathematicians at least some comfort. The fact that the Continuum Hypothesis
turned out to be one of these independent statements was the first example of a

rather important statement being independent of the axioms.

1.5 Axiom of Choice

It is now time to exam the "C" in "ZFC" which was mentioned in the beginning of

this chapter.

Definition 1.5.1. (Axiom of Choice) Let X be a set whose elements are all
nonempty sets. Then there exists a function f whose domain is X such that f(A) € A
for all A € X.

One thing that is nice about having statements which are independent of a set of
axioms is that we can then include those statements as a new axiom without fear of
it causing problems, at least as a logical system. Whether or not it is appropriate
for the statement to be an axiom is usually cause for much debate. The Axiom of
Choice turns out to be independent of the ZF Axioms and so we can include it as a

new axiom, and, when we do, we end up with the ZFC Axioms.
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There was a time when mathematicians debated on whether or not it was appropri-
ate to include the Axiom of Choice as an axiom for set theory. Indeed, some pretty
strange and counterintuitive statements can be proven using the Axiom of Choice
(for example, the Banach-Tarski Paradox, which says that it is possible to decompose
the unit ball in R? into finitely many pieces and then, using only rotations and trans-
lations, reassemble the pieces into two identical copies of the unit ball, each having
the same volume as the original). Nevertheless, today it is universally accepted as

an appropriate axiom and we can use it freely.

The way the Axiom of Choice is worded is not usually how it is used. Suppose we
have an index set I and, for each 7 € I, there is a nonempty set A;. The Axiom of
Choice allows us to then say things like, "for each ¢ € I, since A; is nonempty, let
a; € A;." Tt doesn’t seem so controversial now, does it? If [ is finite, then we don’t
actually need the Axiom of Choice. Or, if we specified how exactly one should pick
the a; € A;, then the Axiom of Choice is not needed either. The Axiom of Choice is
used when we have an arbitrary collection of nonempty sets and we want to pick an

element out of each of these sets without telling the reader how to pick each element.

There are many statements which are equivalent to the Axiom of Choice. One of
which is called Zorn’s Lemma. Since we freely use the Axiom of Choice, we will also

freely use Zorn’s Lemma.

Theorem 1.5.2. (Zorn’s Lemma) Let P be a nonempty partially ordered set. If

every chain in P has an upper bound in P, then P has at least one mazimal element.

Admittedly, it is not obvious that Zorn’s Lemma is equivalent to the Axiom of Choice.
Again, we will omit the proof to avoid spending too much time on preliminaries. The

interested reader would certainly have no trouble finding a proof in the literature.

Exercise 1.5.3. Let A and B be sets and let f : A — B. Let C' C A. We define
fle : C — B by flc(c) = f(c) for all ¢ € C and call f|c the restriction of f to C
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. Suppose f: A — B is surjective. Prove there exists C' C A such that f|¢: C — B
is a bijection. Hint: Use the Axiom of Choice.

1.6 Products of Sets Revisited

We have already seen how to define the product of finitely many sets. In order to take
products of infinitely many sets (countable or uncountable), it is worth revisiting the

product of a finite number of sets to develop a different view.

As we saw in an earlier section, given n € Z,, and sets Ay, As, ..., A,, the product
Ay X Ay X -+ x A, is the set of all n-tuples (ay,as,...,a,). A notation we will be
making use of is .

[T4i=41x A% x 4,

i=1
Now, another way to view the elements of the above set is to associate the n-tuple
(a1,as,...,a,) with the function f : Z, — Ul A;, where f(i) = a; for all i =
1,2,...,n. Note that we have f(i) € A; for all i = 1,2,...,n. Thus, we can think
of T, A; as the set of all functions f : Z, — U, A; such that f(i) € A; for all

1=1,2,...,n.

If instead, we have a countable collection of sets, say Ai, A, ..., then one way to

view the set

ﬁAi:A1XA2X"'

i=1
is that it is the set of all sequences (aq,aq,...), where a; € A; for all ¢ € Z,.
Another way to view this set is that it is the set of all functions f : Z, — U2, A;
where f(i) € A; for all i € Z,.

Now, suppose we have an index set I and, for each i € I, a set A;. If I is finite or

countable then we can interpret [],., A; as we did in the above two situations. But
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what if I is uncountable? How do we picture an ordered tuple of uncountably many

elements? To make matters worse, what if our index set I isn’t a totally ordered

set? Then what would the order of our coordinates even be? For these reasons, it is

better to have the function interpretation of the product of these sets and think of
[I;c; Ai as the set of all functions f : I — U A; such that f(i) € A;.

Example 1.6.1. (i) Suppose [ = {1,2} and 4; = Ay = R. Then []

(1)

(i)

Example 1.6.2. Some examples of subsets of R*+, R¥ and R

Ai:R2

i€l
or, if we’d rather, [],.; A; is the set of all functions f : {1,2} — R.

Suppose I = Z, and A; = R for all 7 € Z,. Then [],.; A; is the set of all
real-valued sequences (z;)°, that we study in our Calculus classes. If, in the
first example, we think of 2 as a cardinal number rather than a positive integer,
and think about the equation R x R = R?, then it is natural in this example
to write [[;c,
to instead see J[;c;.

index set specifically. One advantage to this, is when viewing the elements of the

R = R®. It is more common though, by an abuse of notation,

R = R?%+ because it has the advantage of specifying the

product as functions, we have told the readers which countable set, specifically

Z, we are using as the domain of our functions.

Suppose / = R and A; = R for all i € I. Then [[,.; A; = R¥ is the set of
all functions f : R — R. Similarly, R® is the set of all functions f : C — R
while CR is the set of all functions f : R — C. Thus, for example, if we define
f:C — Rby f(z) = |z| (where |2| is the modulus of z), then f € R®. Also, if
g : R — C is defined by g(z) = €™, then g € CE.

[@4] where [a, b] is a

closed interval, we will be discussing later in the notes are given here.

(i)

Let cop be the set of all real-valued sequences with finitely many nonzero coor-
dinates. Then cqy C R%+.
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(ii) Let ¢ be the set of all real-valued sequences which converge to zero. Then
Co Q RZ+.

(iii) Let c be the set of all real-valued sequences which converge. Then ¢ C R%+.

(iv) Let A be aset. Denote C(A) to be the set of all continuous functions f : A — R.
Then C(R) C R® and C([a,b]) C Rl
Note that we have ¢y C ¢y C ¢ C R%+.

Exercise 1.6.3. Let I be an index set and suppose A; is a nonempty set, for all

i € I. Prove that [[,.; A; is nonempty. Hint: Use the Aziom of Choice.
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