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2 CHAPTER 1. PRELIMINARIES

1.1 Sets

De�nition 1.1.1. A set is a collection of objects. A set is only concerned with

membership. That is, a set's only concern is whether an object is a member of the

set or not. If A is a set and x is an object, we say x is an element of A if x is a

member of A and write x ∈ A. If x is not a member of A, then we say x is not an

element of A and write x /∈ A. The set with no elements is called the empty set

and is denoted by ∅.

The above de�nition of a set will be satisfactory for us in these notes but it should

be stated that, in general, we need to be more careful about how we de�ne sets or

else we run into issues. For example, examine the following exercise.

Exercise 1.1.2. (Russell's Paradox) Obviously, there are many examples of sets

which do not contain themselves (take, for example A = {1, 2, 3}). First, convince

yourself that it is possible for a set to contain itself. That is, provide an example

of a set B such that B ∈ B. Next, consider the set R of all sets which do not

contain themselves (the example A above would be an element of R). Explain why

the question, "Is R ∈ R?" does not have a satisfactory answer.

To avoid such paradoxes, we have developed a set of axioms, or rules that must

be followed, when de�ning sets called the Zermelo-Fraenkel Axioms (or ZF Axioms).

When we also include another axiom called the Axiom of Choice (more on this later),

then they are referred to as the ZFC Axioms. Since we will not need to be so careful

with how we de�ne sets, we will not examine the ZF axioms. We will, however,

discuss the Axiom of Choice later.

De�nition 1.1.3. Let A and B be sets. We say A is a subset of B, and write

A ⊆ B, if every element of A is also an element of B. If A ⊆ B and B ⊆ A, then we

say A equals B, and write A = B.
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The above de�nition tells us that two sets are equal precisely when they have the

exact same elements. It also solidi�es the idea that sets are only concerned with

membership and that added structure is needed if we wish to consider concepts such

as order or repetition. For example, {1, 1, 2, 2} = {1, 2} since every element on the

lefthand set is an element on the right, while every element in the righthand set is

an element on the left. And so, sets do not care about repetition. For this reason,

we would never actually write something like {1, 1, 2, 2} since it is confusing and a

waste of time. Similarly, sets do not care about order since {1, 2} = {2, 1}. Our

most commonly used sets of numbers have standard notation given below:

(i) the set of all natural numbers, that is, the set of all nonnegative integers, is

denoted by N,

(ii) the set of all integers is denoted by Z,

(iii) the set of all positive integers less than or equal to n, where n is a positive

integer, is denoted by Zn,

(iv) the set of all rational numbers is denoted by Q,

(v) the set of all real numbers is denoted by R, and

(vi) the set of all complex numbers is denoted by C.

We will denote the set of all positive integers by Z+. Given a set A, we de�ne the

power set of A, denoted by P(A) to be the set of all subsets of A.

De�nition 1.1.4. Let A and B be sets. The union of A and B, denoted A ∪B, is

the set of all objects x such that x ∈ A or x ∈ B (or both). The intersection of A

and B, denoted A ∩ B, is the set of all objects x such that x ∈ A and x ∈ B. We

say the sets A and B are disjoint if A ∩ B = ∅. The set A minus B, or A throw

away B, denoted by A\B, is the set of all objects in A that are not in B. Although

usually implicitly understood, often times we need to specify the universal set, or
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all the objects under consideration. This is especially true if we want to consider the

complement of a set. That is, the complement of the set A, denoted by Ac, is the

set of all object in the universal set that are not elements of A.

A couple of things worth noting here. First, the "or both" included in the de�nition

of the union of two sets is not actually needed since "or" is always the inclusive

"or" in mathematics. Second, we usually do not specify the universal set since it is

contextually obvious in most cases. Nevertheless, it is technically needed to have a

rigorous de�nition for the complement of a set. For example, if A is the set of all

positive even integers, then most of us would consider Ac to be the set of all positive

odd integers. This assumes though that the universal set is the set of positive integers.

Without specifying the universal set, we could also have that
√
2 ∈ Ac or −7 ∈ Ac.

We often refer to union, intersection, and throwaway as rank-2 operations as they give

us a way to produce one set from two. For these reasons, we borrow language from

algebra to say that unions and intersections are commutative, meaning A∪B = B∪A
and A ∩ B = B ∩ A, as well as associative, i.e., A ∪ (B ∪ C) = (A ∪ B) ∪ C and

A ∩ (B ∩ C) = (A ∩ B) ∩ C. In the next de�nition, we extend our de�nitions of

unions and intersections to collections of sets.

De�nition 1.1.5. Let I be an index set and let Ai be a set for all i ∈ I. Then

⋃
i∈I

Ai = {x|x ∈ Ai for some i ∈ I}

and ⋂
i∈I

Ai = {x|x ∈ Ai for all i ∈ I} .

If the index set I is �nite, say I has n elements, then there is no harm in assuming

I = {1, 2, . . . , n} and we often write

⋃
i∈I

Ai = A1 ∪ A2 ∪ · · · ∪ An
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and ⋂
i∈I

Ai = A1 ∩ A2 ∩ · · · ∩ An.

Example 1.1.6. Let An = [− 1
n
, 1
n
] for all n ∈ Z+, where [a, b] = {x ∈ R|a ≤ x ≤ b}.

Then, ⋃
n∈Z+

An = (−1, 1)

while ⋂
n∈Z+

An = {0}.

Exercise 1.1.7. (DeMorgan's Laws)

(a) Let A and B be sets. Prove that (A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc.

(b) Let I be an index set and let Ai be a set, for all i ∈ I. Prove that(⋃
i∈I

Ai

)c

=
⋂
i∈I

Ac
i and

(⋂
i∈I

Ai

)c

=
⋃
i∈I

Ac
i .

Hint: Prove all of the set equalities above by "set inclusion." That is, to show sets

A and B are equal, show A ⊆ B and B ⊆ A. To do this, prove two statements: if

x ∈ A, then x ∈ B; if x ∈ B, then x ∈ A.

De�nition 1.1.8. Given two sets A and B, the Cartesian product of A and B,

denoted by A×B, is the set of all ordered pairs (a, b) such that a ∈ A and b ∈ B.

Note that we call ordered pairs "ordered" pairs because we care about the order. We

say (a, b) = (c, d) if and only if a = c and b = d. For this reason, (1, 2) ̸= (2, 1).The

reader is probably most familiar with the Cartesian product R× R, which we typi-

cally denote by R2, and visualize as the Cartesian plane. Perhaps some of the readers

have taken a graph theory class or combinatorics class where you studied Z×Z and
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referred to it as the "integer lattice." There is nothing preventing us from taking

Cartesian products of completely di�erent sets though. For example, Z × R would

be the set of all ordered pairs whose �rst coordinate is an integer while the second

coordinate is any real number. Notice though that Z×R ̸= R×Z and so the Carte-

sian product is not, in general, commutative.

Continuing in this fashion, for n ∈ Z+ and sets A1, A2, . . . , An, we de�ne A1 ×A2 ×
· · · × An to be the set of all n-tuples (a1, a2, . . . , an) where ai ∈ Ai for i = 1, . . . , n.

If A = Ai for i = 1, . . . , n, then we often write A1 × A2 × · · · × An = An and so,

for example, R × R × R = R3. Note that technically, R3 ̸= R × R2 ̸= R2 × R since

the elements of R3 are ordered triples while the elements of R× R2 and R2 × R are

ordered pairs where one of their coordinates is also an ordered pair (for example,

elements of R× R2 look like (a, (b, c))). Nevertheless, we often write things such as

R3 = R×R2 since both sets are made up of ordered 3-element subsets of R and are

essentially the same thing. We will return to discussing Cartesian products in a later

section.

One common mistake students often make when �rst learning about Cartesian prod-

ucts is illustrated in the next exercise.

Exercise 1.1.9. Let A and B be sets.

(a) Let C ⊆ A and D ⊆ B. Prove that C ×D ⊆ A×B.

(b) Give an example of a set E such that E ⊂ A×B but E ̸= C×D for any C ⊆ A

and any D ⊆ B.

To be clear about the mistake the previous example is supposed to illuminate, often

times students will write things such as, "Let E ⊆ A × B. Then E = C × D, for

some C ⊆ A and some D ⊆ B." It should now be clear that this is not necessarily

true.
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1.2 Relations

De�nition 1.2.1. We say a set R is a relation from the elements of a set A to the

elements of a set B if R ⊆ A×B. If (a, b) ∈ R, then we often write aRb or a ∼ b. If

R is a relation from the elements of a set A to the elements of the same set A then

we simply say that R is a relation on A. If R is a relation on a set A, we say the

relation is

(i) re�exive if aRa for all a ∈ A,

(ii) symmetric if aRb whenever bRa, and

(iii) transitive if, whenever aRb and bRc, we have that aRc.

An example of a relation on R would be < where we say (a, b) ∈ R if a < b. In this

case, R would not be re�exive or symmetric but it would be transitive. A di�erent

relation on R would be = where (a, b) ∈ R if a = b. In this case, R would be re�exive,

symmetric, and transitive.

De�nition 1.2.2. A relation R on a set A is called an equivalence relation if R

is re�exive, symmetric, and transitive. In this case, we often write a ≡ b instead of

aRb. If R is an equivalence relation on a set A then, for every a ∈ A, we de�ne the

equivalence class of a to be [a] = {x ∈ A|aRx}.

Exercise 1.2.3. Let R be an equivalence relation on a set A. Let a, b ∈ A. Prove

that if aRb, then [a] = [b] and if (a, b) /∈ R, then [a] ∩ [b] = ∅.

De�nition 1.2.4. We say a relation R on a set A is antisymmetric if, whenever

aRb and bRa, we must have that a = b.

De�nition 1.2.5. We say a set A is a partially ordered set (or poset) if there

is a relation on A which is re�exive, transitive, and antisymmetric.
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An example of a partially ordered set would be P(N) where we say that, for A,B ∈
P(N), ARB if A ⊆ B. Notice here that not all of the elements of P(N) are compa-

rable with this relation. For example, if A = {1, 2} and B = {1, 3} then A does not

relate to B and B does not relate to A. In otherwords, (A,B) /∈ R and (B,A) /∈ R.

This leads us to the next de�nition.

De�nition 1.2.6. We say a set A is totally ordered if there is a relation R on A

which is re�exive, transitive, and antisymmetric such that, for all a, b ∈ A, either

aRb or bRa (or both).

The set P(N) ordered by ⊆ is not a totally ordered set by the example given above.

An example of a totally ordered set would be R ordered by ≤. Obviously, this relation
is re�exive and transitive. It is antisymmetric since, for any a, b ∈ R, if a ≤ b and

b ≤ a, then a = b.

De�nition 1.2.7. Let A be a partially ordered set where we denote the relation by

⪯. We say an element a0 ∈ A is a minimal element of A if, a ⪯ a0 implies a = a0

for any a ∈ A. We say an element a1 ∈ A is a maximal element of A, if a1 ⪯ a

implies a = a1 for any a ∈ A.

Note that minimal and maximal elements of a partially ordered set need not be

unique, as the next exercise asks the reader to verify.

Exercise 1.2.8. Give an example of a partially ordered set which has more than

one maximal element. That is, give an example of a partially ordered set A, along

with a partial order ⪯ on the set A, and provide two elements a, b ∈ A such that a

and b are both maximal elements yet a ̸= b.

De�nition 1.2.9. Let A be a partially ordered set ordered by ⪯. We say B ⊆ A

is a chain in A if B with the partial order ⪯ is a totally ordered set. We say an

element a ∈ A is an upper bound for the chain B, if b ⪯ a for all b ∈ B.
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For example, as we saw earlier, P(N) is a partially ordered set when it is ordered

using set-inclusion. It is not a totally ordered set. If we let

B = {∅, {1}, {1, 2}, {1, 2, 3}}

then B is a chain in P(N) since all of the elements of B are comparable. We would

also say that the chain B has a maximal element {1, 2, 3}. So, while {1, 2, 3} is not

a maximal element of P(N), it is a maximal element for the chain B. We would also

say that {1, 2, 3, 4} ∈ P(N) is an upper bound for the chain B. Note that upper

bounds of chains do not need to be elements of the chain.

1.3 Functions

De�nition 1.3.1. Let A and B be sets. We say f ⊆ A × B is a function with

domain A and codomain B, and write f : A → B, if

(i) for all a ∈ A, there exists b ∈ B such that (a, b) ∈ f , and

(ii) if (a, b), (a, c) ∈ f then b = c.

If (a, b) ∈ f , then we often say that a maps to b. Also, if (a, b) ∈ f then we often

write f(a) = b. Note that (i) above means that every element of A must map to

some element of B and (ii) means that no element of A can map to two di�erent

elements of B. In our high school classes, we often present functions as rules which

tell us how to �nd the f(a) that a maps to. We then de�ne the graph of a function

f to be the set of all elements of the form (a, f(a)). Here, we make no distinction

between a function and its graph, thus eliminating a need for such a rule.

De�nition 1.3.2. Let f : A → B be a function. We say f is injective or one-to-

one if (a0, b), (a1, b) ∈ f implies a0 = a1. We say f is surjective or onto if, for every
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b ∈ B there exists a ∈ A such that (a, b) ∈ f . A function is said to be bijective if

it is injective and surjective.

Example 1.3.3. If we de�ne f : N → N by f = {(a, a2)|a ∈ N}, then f is injective

since (a0, b), (a1, b) ∈ f implies that a0 =
√
b = a1 but f is not surjective since 2 ∈ N

yet there exists no a ∈ N such that (a, 2) ∈ f .

Exercise 1.3.4. Give an example of a functionf : N → N which is surjective but

not injective.

Proposition 1.3.5. Let f : A → B and g : B → C. De�ne g ◦ f to be the set of all

elements (a, c) ∈ A× C such that there exists b ∈ B where (a, b) ∈ f and (b, c) ∈ g.

Then g ◦ f is a function with domain A and codomain C.

Proof. First, we have to prove that for all a ∈ A, there exists c ∈ C such that

(a, c) ∈ g ◦ f . Let a ∈ A. Since f is a function with domain A, there exists b ∈ B

such that (a, b) ∈ f . Since g is a function with domain B and b ∈ B, there exists

c ∈ C such that (b, c) ∈ g. Then, by de�nition of g ◦ f , we have that (a, c) ∈ g ◦ f .

Next, we have to prove that if (a, c1), (a, c2) ∈ g◦f , then c1 = c2. Since (a, c1), (a, c2) ∈
g ◦ f , there exists b1, b2 ∈ B such that (a, b1) ∈ f and (b1, c1) ∈ g and (a, b2) ∈ f and

(b2, c2) ∈ g. Since (a, b1), (a, b2) ∈ f and f is a function, we must have that b1 = b2.

Then, we have that (b1, c1), (b1, c2) ∈ g. Since g is a function, we must have that

c1 = c2. Therefore, g ◦ f : A → C.

Exercise 1.3.6. Let f : A → B and g : B → C.

(a) Prove that if f and g are injective, then g ◦ f is injective.

(b) Prove that if f and g are surjective, then g ◦ f is surjective.

(c) Conclude that if f and g are bijective, then g ◦ f is bijective.
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Remark 1.3.7. Given f : A → B and C ⊆ A, we de�ne f(C) to be the subset of B

containing all b ∈ B such that there exists c ∈ C such that (c, b) ∈ f . For D ⊆ B,

we de�ne f−1(D) to be the subset of A containing all a ∈ A such that there exists

d ∈ D so that (a, d) ∈ f .

Consider the function f : N → N we considered earlier, where f(a) = a2 for all

a ∈ N. In this case,

f({1, 2, 3}) = {1, 4, 9} , f−1({3, 4, 16}) = {2, 4} , and f−1({3, 7, 11}) = ∅.

Exercise 1.3.8. Let A and B be sets and let f : A → B. Let C1, C2 ⊆ A and

D1, D2 ⊆ B. Fill in the following blanks with either "⊆", "⊇", "=," or "̸=."

(i) f(C1 ∪ C2) f(C1) ∪ f(C2)

(ii) f(C1 ∩ C2) f(C1) ∩ f(C2)

(iii) f(Cc
1) f(C1)

c

(iv) f−1(D1 ∪D2) f−1(D1) ∪ f−1(D2)

(v) f−1(D1 ∩D2) f−1(D1) ∩ f−1(D2)

(vi) f−1(Dc
1) f−1(D1)

c

De�nition 1.3.9. Let f : A → B. We de�ne f−1 to be the set of all (b, a) ∈ B ×A

such that (a, b) ∈ f . If f−1 is a function, then we say f is invertible .

Let f : A → B. If f is invertible, then f−1 : B → A and f−1(b) = a if and only if

f(a) = b. If f is not invertible, then you will often still see people write f−1(b) but

what they really mean is f−1({b}). To illustrate, consider the example of f : R → R
where f(a) = a2. It is easy to see that f−1 is not a function since, for example,

there exists no a ∈ R such that (−1, a) ∈ f−1. Hence, f is not invertible. On the
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otherhand, one will still see people write things like f−1(4) by which they actually

mean f−1(4) = f−1({4}) = {−2, 2}. In light of this, f−1(0) = {0} and f−1(−1) = ∅.

Proposition 1.3.10. Let f : A → B. The function f is invertible if and only if f

is a bijective.

Proof. Suppose f is invertible. Then f−1 = {(b, a) ∈ B×A| (a, b) ∈ f} is a function.
First, to show f is injective, suppose (a1, b), (a2, b) ∈ f . Then (b, a1), (b, a2) ∈ f−1.

Since f−1 is a function, we must have that a1 = a2. Hence, f is injective. Now, to

prove f is surjective, let b ∈ B. Since f−1 is a function, there exists a ∈ A such that

(b, a) ∈ f−1. Then (a, b) ∈ f and so f is surjective. Hence, f is bijective.

For the other direction, suppose f is bijective. We �rst want to show that for all

b ∈ B, there exists a ∈ A such that (b, a) ∈ f−1. Let b ∈ B. Since f is surjective,

there exists a ∈ A such that (a, b) ∈ f . Hence, (b, a) ∈ f−1. Next, we want to

show that if (b, a1), (b, a2) ∈ f−1 then a1 = a2. Let (b, a1), (b, a2) ∈ f−1. Then

(a1, b), (a2, b) ∈ f . Since f is injective, we have that a1 = a2. Therefore, f−1 is a

function.

Exercise 1.3.11. Prove that if f : A → B and g : B → C are invertible, then g ◦ f
is invertible and (g ◦ f)−1 = f−1 ◦ g−1.

1.4 Cardinality

De�nition 1.4.1. Given a collection of sets C, de�ne a relation ≡ on C by A ≡ B if

and only if there exists a bijection f : A → B. In this case, we say A has the same

cardinality as B and write card(A) = card(B) or |A| = |B|.

Proposition 1.4.2. Given a collection of sets C, the relation ≡ de�ned above is an

equivalence relation.
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Proof. Let C be a collection of sets.

Let A ∈ C. Then f : A → A de�ned by f(a) = a is a bijection and so A ≡ A.

Let A,B ∈ C and suppose A ≡ B. Then there exists a bijection f : A → B. Then,

f−1 : B → A is a bijection and so B ≡ A.

Let A,B,C ∈ C and suppose A ≡ B and B ≡ C. Since A ≡ B, there exists a

bijection f : A → B. Since B ≡ C, there exists a bijection g : B → C. Then, by

Exercise 1.3.6, we have that g ◦ f : A → C is a bijection and so A ≡ C.

De�nition 1.4.3. We say a set A is �nite (or countably �nite) if, for some

n ∈ Z+, A has the same cardinality as Zn and we say the cardinality of A is n, or

write card(A) = |A| = n. We say a set A is countably in�nite if it has the same

cardinality as N and we say the cardinality of A is ℵ0, or write card(A) = |A| = ℵ0.

If A is �nite or countably in�nite then we say A is countable. If A is not countable,

then we say A is uncountable. If A has the same cardinality as R, then we say the

cardinality of A is the continuum and write card(A) = |A| = c.

To avoid spending too much time on cardinality, we will assume the reader has

already examined the following statements and theorems in another course so we

will discuss them without proof. Obviously, if the reader is interested in seeing the

proofs of any of these theorems then the instructor can direct them to an appropriate

source.

The cardinalities of our most common sets are:

|Zn| = n

|N| = |Z| = |Q| = ℵ0

|R| = |C| = c
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From the above notation and terminology, one would assume that R and C are

uncountable (otherwise we would have no use for the symbol c) and indeed, this is

the case.

The fact that the cardinality relation forms an equivalence relation gives a very

common strategy for showing a set has a certain cardinality, say γ. That is, if we

want to show a set A has cardinality γ, and we already know a set B has cardinality

γ, then it is enough to show that there exists a bijection f : A → B or a bijection

g : B → A (there is a bijection f : A → B if and only if there is a bijection g : B → A,

namely g = f−1).

So, for example, if we want to show a set A is countably in�nite, we have many

options. We could show that there is a bijection f : A → N, a bijection g : Q → A,

or a bijection h : A → Z, just to list a few possibilities.

Another useful theorem is the following:

Theorem 1.4.4. Let A and B be countable sets. Then A ∪ B, A ∩ B, and A × B

are countable.

Note that this theorem then extends to the following corollary:

Corollary 1.4.5. Let A1, A2, . . . , An be countable sets. Then

⋃
i∈Zn

Ai ,
⋂
i∈Zn

Ai , A1 × A2 × · · · × An

are all countable sets.

We do have to be careful with the above theorem and corollary when we are making

a distinction between countably �nite and countably in�nite. For example, it is

possible that A and B are countably in�nite but A ∩ B is countably �nite. Also, if

A is countably �nite and B is countably in�nite then A ∪ B and A × B would be

countably in�nite.
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Another useful theorem is the following:

Theorem 1.4.6. Let A and B be sets where A ⊆ B. If B is countable, then A is

countable. On the otherhand, if A is uncountable then B is uncountable.

There is also a way to order our cardinalities. If A and B are sets and there exists

an injection f : A → B but no surjection g : A → B then we write |A| < |B|.

With this notation, we then have

0 < 1 < 2 < · · · < ℵ0 < c

if we think of 1, 2, . . . as cardinalities rather than numbers.

This string of inequalities might raise several questions to an inquisitive reader and,

indeed, sparked a lot of interest among mathematicians back in the day. The �rst

line of questioning might be, "Does there exist a set A such that c < |A|? If such a

set A exists, does there exist a set B so that |A| < |B|?" A second question might

be, "Can we �nd a set A such that ℵ0 < |A| < c?"

To answer the �rst line of questioning, we have the following theorem due to Cantor.

Theorem 1.4.7. (Cantor's Theorem) Let A be a set. Then |A| < |P(A)|.

Proof. following exercise

Exercise 1.4.8. Prove Cantor's Theorem. Hint: Clearly, we can de�ne an injection

from a set A to P(A) (just map every element x ∈ A to {x}). So, we just need

to show that there can be no surjection f : A → P(A). Do this by contradiction.

Suppose we have such a surjection f . De�ne X = {a ∈ A : a /∈ f(a)}. Since

X ∈ P(A) and f is a surjection, there exists a0 ∈ A such that f(a) = X. Now, ask

the question, "is a0 ∈ f(a0)?".
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Hence, from Cantor's Theorem, we can see that

c = |R| < |P(R)| < |P(P(R))| < |P(P(P(R)))| < · · ·

and so we have our answer to the �rst line of questioning. Recall from combinatorics

the fact that if A is a set and |A| = n, then |P(A)| = 2n. For this reason, you will

often see, even when A is countably in�nite or uncountable, the cardinal number

2|A|, by which we mean 2|A| = |P(A)|. For example, 2ℵ0 = |P(N)| = |P(A)| for any
countably in�nite set A.

Perhaps Cantor's Theorem also gives us an answer to our second question. That is,

we know from Cantor's Theorem that ℵ0 < 2ℵ0 so we will have our answer if 2ℵ0 < c.

Unfortunately, this is not the case as the next theorem shows.

Theorem 1.4.9.

2ℵ0 = c

The second question, "Does there exist a set A such that ℵ0 < |A| < c?" remained

an open question, called The Continuum Hypothesis, for quite a long time. To be

precise, the Continuum Hypothesis is the statement, "There is no set A such that

ℵ0 < |A| < c." It was proposed by Cantor in the 1870s and it is worded this way

because Cantor believed that there was no cardinality strictly between ℵ0 and c.

So, what is the answer? It's complicated. To understand, we �rst need to discuss

Gödel's Incompleteness Theorem. In 1931, Kurt Gödel proved that, essentially,

given any "appropriate" axiomatic system, there will always be mathematical state-

ments which can't be proven or disproven. While the theorem is remarkable, it was

de�nitely a cause for concern for mathematicians at the time. To be clear, it says

that no matter what list of axioms you start with (as long as it's an appropriate one,

i.e., not self-contradictory, su�ciently large enough to include basic arithmetic, etc.)

there will always be questions we can't answer or statements whose truth value we

cannot verify. We say such statements are "independent of the axioms." So, when
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confronted with a statement and deciding on its truth value, we don't just have the

two possible answers of "true" and "false" but, rather, the three possible answers of

"true," "false," or "independent of the axioms."

At this point, the reader probably sees where this is going. It turns out, through

a proof given by Gödel in the 1940s and another by Cohen in the 1960s, that the

Continuum Hypothesis is independent of the ZFC axioms. That is, starting with

the ZFC axioms of set theory, it is impossible to prove or disprove the Continuum

Hypothesis. When the Incompleteness Theorem was �rst published, the only ex-

amples of statements which were indepedent of a given axiomatic system, were not

particularly important ones and often even rather ridiculous. At the time, this gave

mathematicians at least some comfort. The fact that the Continuum Hypothesis

turned out to be one of these independent statements was the �rst example of a

rather important statement being independent of the axioms.

1.5 Axiom of Choice

It is now time to exam the "C" in "ZFC" which was mentioned in the beginning of

this chapter.

De�nition 1.5.1. (Axiom of Choice) Let X be a set whose elements are all

nonempty sets. Then there exists a function f whose domain isX such that f(A) ∈ A

for all A ∈ X.

One thing that is nice about having statements which are independent of a set of

axioms is that we can then include those statements as a new axiom without fear of

it causing problems, at least as a logical system. Whether or not it is appropriate

for the statement to be an axiom is usually cause for much debate. The Axiom of

Choice turns out to be independent of the ZF Axioms and so we can include it as a

new axiom, and, when we do, we end up with the ZFC Axioms.
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There was a time when mathematicians debated on whether or not it was appropri-

ate to include the Axiom of Choice as an axiom for set theory. Indeed, some pretty

strange and counterintuitive statements can be proven using the Axiom of Choice

(for example, the Banach-Tarski Paradox, which says that it is possible to decompose

the unit ball in R3 into �nitely many pieces and then, using only rotations and trans-

lations, reassemble the pieces into two identical copies of the unit ball, each having

the same volume as the original). Nevertheless, today it is universally accepted as

an appropriate axiom and we can use it freely.

The way the Axiom of Choice is worded is not usually how it is used. Suppose we

have an index set I and, for each i ∈ I, there is a nonempty set Ai. The Axiom of

Choice allows us to then say things like, "for each i ∈ I, since Ai is nonempty, let

ai ∈ Ai." It doesn't seem so controversial now, does it? If I is �nite, then we don't

actually need the Axiom of Choice. Or, if we speci�ed how exactly one should pick

the ai ∈ Ai, then the Axiom of Choice is not needed either. The Axiom of Choice is

used when we have an arbitrary collection of nonempty sets and we want to pick an

element out of each of these sets without telling the reader how to pick each element.

There are many statements which are equivalent to the Axiom of Choice. One of

which is called Zorn's Lemma. Since we freely use the Axiom of Choice, we will also

freely use Zorn's Lemma.

Theorem 1.5.2. (Zorn's Lemma) Let P be a nonempty partially ordered set. If

every chain in P has an upper bound in P , then P has at least one maximal element.

Admittedly, it is not obvious that Zorn's Lemma is equivalent to the Axiom of Choice.

Again, we will omit the proof to avoid spending too much time on preliminaries. The

interested reader would certainly have no trouble �nding a proof in the literature.

Exercise 1.5.3. Let A and B be sets and let f : A → B. Let C ⊆ A. We de�ne

f |C : C → B by f |C(c) = f(c) for all c ∈ C and call f |C the restriction of f to C
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. Suppose f : A → B is surjective. Prove there exists C ⊆ A such that f |C : C → B

is a bijection. Hint: Use the Axiom of Choice.

1.6 Products of Sets Revisited

We have already seen how to de�ne the product of �nitely many sets. In order to take

products of in�nitely many sets (countable or uncountable), it is worth revisiting the

product of a �nite number of sets to develop a di�erent view.

As we saw in an earlier section, given n ∈ Z+, and sets A1, A2, . . . , An, the product

A1 × A2 × · · · × An is the set of all n-tuples (a1, a2, . . . , an). A notation we will be

making use of is
n∏

i=1

Ai = A1 × A2 × · · · × An.

Now, another way to view the elements of the above set is to associate the n-tuple

(a1, a2, . . . , an) with the function f : Zn → ∪n
i=1Ai, where f(i) = ai for all i =

1, 2, . . . , n. Note that we have f(i) ∈ Ai for all i = 1, 2, . . . , n. Thus, we can think

of
∏n

i=1 Ai as the set of all functions f : Zn → ∪n
i=1Ai such that f(i) ∈ Ai for all

i = 1, 2, . . . , n.

If instead, we have a countable collection of sets, say A1, A2, . . . , then one way to

view the set
∞∏
i=1

Ai = A1 × A2 × · · ·

is that it is the set of all sequences (a1, a2, . . . ), where ai ∈ Ai for all i ∈ Z+.

Another way to view this set is that it is the set of all functions f : Z+ → ∪∞
i=1Ai

where f(i) ∈ Ai for all i ∈ Z+.

Now, suppose we have an index set I and, for each i ∈ I, a set Ai. If I is �nite or

countable then we can interpret
∏

i∈I Ai as we did in the above two situations. But
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what if I is uncountable? How do we picture an ordered tuple of uncountably many

elements? To make matters worse, what if our index set I isn't a totally ordered

set? Then what would the order of our coordinates even be? For these reasons, it is

better to have the function interpretation of the product of these sets and think of∏
i∈I Ai as the set of all functions f : I → ∪i∈IAi such that f(i) ∈ Ai.

Example 1.6.1. (i) Suppose I = {1, 2} and A1 = A2 = R. Then
∏

i∈I Ai = R2

or, if we'd rather,
∏

i∈I Ai is the set of all functions f : {1, 2} → R.

(ii) Suppose I = Z+ and Ai = R for all i ∈ Z+. Then
∏

i∈I Ai is the set of all

real-valued sequences (xi)
∞
i=1 that we study in our Calculus classes. If, in the

�rst example, we think of 2 as a cardinal number rather than a positive integer,

and think about the equation R × R = R2, then it is natural in this example

to write
∏

i∈Z+
R = Rℵ0 . It is more common though, by an abuse of notation,

to instead see
∏

i∈Z+
R = RZ+ because it has the advantage of specifying the

index set speci�cally. One advantage to this, is when viewing the elements of the

product as functions, we have told the readers which countable set, speci�cally

Z+, we are using as the domain of our functions.

(iii) Suppose I = R and Ai = R for all i ∈ I. Then
∏

i∈I Ai = RR is the set of

all functions f : R → R. Similarly, RC is the set of all functions f : C → R
while CR is the set of all functions f : R → C. Thus, for example, if we de�ne

f : C → R by f(z) = |z| (where |z| is the modulus of z), then f ∈ RC. Also, if

g : R → C is de�ned by g(x) = eix, then g ∈ CR.

Example 1.6.2. Some examples of subsets of RZ+ , RR, and R[a,b], where [a, b] is a

closed interval, we will be discussing later in the notes are given here.

(i) Let c00 be the set of all real-valued sequences with �nitely many nonzero coor-

dinates. Then c00 ⊆ RZ+ .
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(ii) Let c0 be the set of all real-valued sequences which converge to zero. Then

c0 ⊆ RZ+ .

(iii) Let c be the set of all real-valued sequences which converge. Then c ⊆ RZ+ .

(iv) Let A be a set. Denote C(A) to be the set of all continuous functions f : A → R.
Then C(R) ⊆ RR and C([a, b]) ⊆ R[a,b].

Note that we have c00 ⊂ c0 ⊂ c ⊂ RZ+ .

Exercise 1.6.3. Let I be an index set and suppose Ai is a nonempty set, for all

i ∈ I. Prove that
∏

i∈I Ai is nonempty. Hint: Use the Axiom of Choice.
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