
THE VECTOR-VALUED MAXIMAL FUNCTION

MATT ZIEMKE

Let f be a function from Rn into `2(R), i.e., f = (f1, f2, . . . ) where fi : Rn → R for all i = 1, 2, . . . and∑∞
n=1 |fn(x)|2 < ∞ for all x ∈ Rn. Let F(X,Y ), where X and Y are sets, denote the set of all functions

from X to Y . Then we define the vector-valued maximal function, M : F(Rn, `2(R))→ F(Rn,R) where

Mf(x) =

 ∞∑
j=1

(Mfj(x))2

1/2

for all x ∈ Rn

where M is the Hardy-Littlewood Maximal function, i.e.,

Mf(x) = sup
B

1
µ(B)

∫
B

|f(y)|dy

where the supremum is taken over all open balls containing x. We say a function f : Rn → `2(R) is an element
of Lp(Rn, `2(R)) if each fj is measurable and ‖f(x)‖2 ∈ Lp(Rn,R). In this case, we let ‖f‖p = ‖‖f(·)‖2‖p.
The purpose of this paper is to show that M is weak-(1,1) and strong-(p,p) for all 1 < p <∞, i.e., we want
to prove the following theorem.

Theorem 1. (a) If f ∈ Lp(Rn, `2(R)), 1 ≤ p <∞, then Mf is finite almost everywhere.
(b) If f ∈ L1(Rn, `2(R)) then, for every α > 0,

µ
(
{x : Mf(x) > α}

)
≤ A

α
‖f‖1

(c) If f ∈ Lp(Rn, `2), 1 < p <∞, then Mf ∈ Lp(Rn,R) and ‖Mf‖p ≤ Ap‖f‖p for some constant Ap.

To prove this theorem, we first need to prove some lemmas and recall some facts about the Hardy-
Littlewood Maximal function.

Theorem 2. Let f be a function from Rn into R.
(a) If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, then Mf is finite almost everywhere.
(b) If f ∈ L1(Rn), then for every α > 0,

µ ({x : Mf(x) > α}) ≤ c

α
‖f‖1

(c) If f ∈ Lp(Rn), 1 < p ≤ ∞, then Mf ∈ Lp(Rn) and ‖Mf‖p ≤ Ap‖f‖p where Ap is a constant depending
on c and p.

Date: April 2012.
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The proof of Theorem 2 is fairly straightforward. First show M is strong-(∞, ∞) and weak-(1,1) (which
is the statement (b)) then use Marcenkiewicz’s Theorem to show that M is strong-(p,p), for 1 < p ≤ ∞,
which gives us (c). Statements (b) and (c) then give (a). The proof that M is strong-(∞, ∞) is trivial. The
proof that M is weak-(1,1) just follows from Chebyshev and a simple covering lemma which we will now
state since we will need it later on. The proof of the lemma involves a basic greedy argument.

Lemma 3. Let E be a measurable subset of Rn that is the union of a finite collection of balls {Bk}nk=1 =
{Bk(xk, εk)}nk=1. Then there exists a disjoint subcollection {Bkj

}mj=1 of {Bk}nk=1 so that

µ(E) ≤ 3n
m∑
j=1

µ(Bkj
)

We will need another covering lemma as well for the proof of Theorem 1, so let us state it now and give
its proof.

Lemma 4: Calderon-Zygmund Lemma. Let f : Rn → C be non-negative and integrable and let α > 0.
Then there exists sets F and Ω such that:
(1) Rn = F ∪ Ω,
(2) |f(x)| ≤ α almost everywhere on F , and
(3) Ω is a union of cubes; Ω = ∪kQk whose interiors are mutually disjoint, and so that, for each Qk, we have
that

α <
1

µ(Qk)

∫
Qk

f(x)dx ≤ 2nα

Proof. Since f ∈ L1(Rn), we have that
∫
Rn f(x)dx = c < ∞ so choose k ∈ Z so that, if Q is a cube in Rn

with edge lengths 2k then µ(Q) > c
α . Then,

1
µ(Q)

∫
Q

f(x)dx ≤ 1
µ(Q)

∫
Rn

f(x)dx ≤ α

c
c = α

Now, divide Rn into cubes with disjoint interiors whose side lengths are all 2k and let Q be such a cube.
Divide Q into 2n congruent cubes by bisecting each of its sides. Let Q′ be one of our new subcubes. If

1
µ(Q′)

∫
Q′
f(x)dx > α then let Q′ be one of the Qk mentioned in the statement of the proof. Note that

α <
1

µ(Q′)

∫
Q′
f(x)dx ≤ 1

µ(Q′)

∫
Q

f(x)dx = 2n
1

µ(Q)

∫
Q

f(x)dx ≤ 2nα

If instead, we have that 1
µ(Q′)

∫
Q′
f(x)dx ≤ α then divide Q′ into 2n congruent cubes and repeat the process.

Let Ω = ∪kQk and F = Ωc. Let x ∈ F . Then, for any cube Q constructed in our process which contains x,
we have that 1

µ(Q)

∫
Q
f(x)dx ≤ α and so

f(x) = lim
diam(Q)→0

1
µ(Q)

∫
Q

f(y)dy ≤ α a.e.

Where the Q’s in the limit can be taken as a sequence of cubes from our construction containing x whose
diameters are converging to zero. This completes the proof of our lemma.

�
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We have two more Lemmas to consider before proceeding to the proof of Theorem 1.

Lemma 5. Let Q1 and Q2 be cubes in Rn such that Q1 ∩ Q2 6= φ. Let Q̃ denote the cube with the same
center as Q but with 2n-times the diameter. Then, either Q1 ⊆ Q̃2 or Q2 ⊆ Q̃1.

Proof. Suppose diam(Q1) ≤ diam(Q2), then we claim that Q1 ⊆ Q̃2. The case when n = 1 is trivial so
suppose n ≥ 2. Also, we can assume that Q2 is centered at the origin. Let Q2 = [−s2 ,

s
2 ]n where s is the length

of the edges of Q2. Then Q̃2 = [−sn, sn]n. Since Q1 ∩ Q2 6= φ, let y ∈ Q1 ∩ Q2. Let y = (y1, y2, . . . , yn).
Since y ∈ Q2 we have that −s2 ≤ yi ≤ s

2 for all i = 1, . . . , n. Let x = (x1, x2, . . . , xn) ∈ Q1. Since y ∈ Q1

we have that d(x, y) ≤ diam(Q1) ≤ diam(Q2). Suppose x /∈ Q̃2. Then there exists k = 1, . . . , n so that
|xk| > sn. Since |xk| > sn and |yk| ≤ s

2 we have that

|xk − yk| ≥ ||xk| − |yk|| ≥ |sn−
s

2
|

and so (xk − yk)2 ≥ (sn− s
2 )2. Let a = (a1, . . . , an), b = (b1, . . . bn) ∈ Q2. Then,

d(a, b)2 = (a1 − b1)2 + (a2 − b2)2 + · · ·+ (an − bn)2

≤ (
s

2
+
s

2
)2 + (

s

2
+
s

2
)2 + · · ·+ (

s

2
+
s

2
)2

= s2n

So, diam(Q2) ≤ s
√
n. By considering a = ( s2 ,

s
2 , . . . ,

s
2 ) and b = (−s2 ,

−s
2 , . . . ,

−s
2 ) we see that we actually

have diam(Q2) = s
√
n. Then,

d(x, y) =
(
(x1 − y1)2 + · · ·+ (xn − yn)2

)1/2 ≥ ((xk − yk)2
)1/2 ≥ sn− s

n
= s(n− 1

2
) > s

√
n = diam(Q2)

where s(n− 1
2 ) > s

√
n because n > 2. This clearly contradicts the fact that d(x, y) ≤ diam(Q2) so we must

have that x ∈ Q̃2 and the proof is complete.
�

Lemma 6. Let f and φ be positive real-valued functions on Rn and let q > 1. Then∫
Rn

(Mf(x))qφ(x)dx ≤ Bq
∫

Rn

|f(x)|qMφ(x)dx

for some constant Bq. Further, ∫
{x:Mf(x)>α}

φ(x)dx ≤ A

α

∫
Rn

|f(x)Mφ(x)dx

for some constant A.

Proof. Let φ be a positive real-valued function on Rn. We can then define a measure, say ν, on Rn by
letting v(E) =

∫
E
φ(x)dx for all µ-measurable sets E. Note then, for a function f , that

∫
Rn f(x)dν(x) =∫

Rn f(x)φ(x)dx. Similarly, we can define a measure ρ on Rn by letting ρ(E) =
∫
E
Mφ(x)dx. Consider

3
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M : L∞(Rn, ρ)→ L∞(Rn, ν). Let f ∈ L∞(Rn, ρ). Then

‖Mf‖L∞(ν) = ess sup
x∈Rn

sup
x∈Q

1
µ(Q)

∫
Q

|f(y)|dy

≤ ess sup
x∈Rn

sup
x∈Q

1
µ(Q)

∫
Q

‖f‖L∞(ρ)dy

= ess sup
x∈Rn

sup
x∈Q

1
µ(Q)

‖f‖L∞(ρ)µ(Q)

= ‖f‖L∞(ρ)

So we have that M is strong-(∞, ∞) with respect to ρ and ν. Let Eα = {x : Mf(x) > α} and let E be a
compact subset of Eα. Let x ∈ E. Then there exists B(x, εx) so that x ∈ B(x, εx) and

1
µ(B(x, εx))

∫
B(x,εx)

|f(y)|dy > α

which gives that

µ(B(x, εx)) <
1
α

∫
B(x,εx)

|f(y)|dy

Then, {B(x, εx} is an open cover of E, so there exists a finite subecover, say B(x1, ε1), . . . , B(xk, εk). Then,
by Lemma 3, we can select a disjoint collection B(x1, ε1), . . . , B(xm, εm) (where we allow for re-indexing) of
the above finite collection, so that E ⊆ ∪mj=1B(xj , 3εj). Well,∫

B

|f(y)|Mφ(y)dy ≥
∫
B

|f(y)|
(

1
µ(B)

∫
B

φ(z)dz
)
dy =

(
1

µ(B)

∫
B

|f(y)|dy
)(∫

B

φ(z)dz
)
≥ α

∫
B

φ(z)dz

Then, we have

ν(E) ≤
m∑
j=1

ν (B(xj , 3εj))

≤ A
m∑
j=1

ν (B(xj , εj))

= A
m∑
j=1

∫
B(xj ,εj)

φ(y)dy

≤ A
m∑
j+1

1
α

∫
B(xj ,εj)

|f(y)|Mφ(y)dy by above

≤ A

α

∫
Rn

|f(y)|Mφ(y)dy

=
A

α
‖f‖L1(ρ)

Since this is true for all compact subsets of Eα, we have that ν(Eα) ≤ A
α ‖f‖L1(ρ), and soM is weak-(1,1) with

respect to ν and µ. Therefore, by Marcinkiewicz, we have that M : Lp(Rn, ρ) → Lp(Rn, ν) is strong-(p,p)
for all 1 < p ≤ ∞, i.e., (∫

Rn

(Mf(y))p dν(y)
)1/p

≤ c
(∫

Rn

|f(y)|pdρ(y)
)1/p

4
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And so, ∫
Rn

(Mf(x))pφ(x)dx ≤ cp
∫

Rn

|f(x)|pMφ(x)dx

which completes the proof of Lemma 6.
�

Before proceeding to the proof of Theorem 1, a remark is in order. For a Banach space X, let X∗ denote
the dual of X, i.e., X∗ is the set of all bounded linear functionals on X. Let p, q ≥ 1 be Holder conjugates.
Then it is a well known fact that Lp(Rn) is isometrically isomorphic to Lq(Rn)∗. Further, for f ∈ Lp(Rn),
its "representation", say ϕf , as a member of Lq(Rn)∗ is given by ϕf (g) =

∫
Rn g(x)f(x)dx. Let ‖ · ‖L denote

the operator norm on Lq(Rn)∗. Then we have that

‖f‖p = ‖ϕf‖L = sup{|ϕf (g)| : g ∈ Lq(Rn), ‖g‖ ≤ 1} = sup{|
∫

Rn

g(x)f(x)dx| : g ∈ Lq(Rn), ‖g‖ ≤ 1}

We will use this equality later in the proof of Theorem 1. Let us restate the theorem again.

Theorem 1. (a) If f ∈ Lp(Rn, `2(R)), 1 ≤ p <∞, then Mf is finite almost everywhere.
(b) If f ∈ L1(Rn, `2(R)) then, for every α > 0,

µ
(
{x : Mf(x) > α}

)
≤ A

α
‖f‖1

(c) If f ∈ Lp(Rn, `2), 1 < p <∞, then Mf ∈ Lp(Rn,R) and ‖Mf‖p ≤ Ap‖f‖p for some constant Ap.

Proof. We will start by proving (c) for p = 2.

‖Mf‖22 =
∫

Rn


 ∞∑
j=1

(Mfj(x))2

1/2


2

dµ

=
∞∑
j=1

∫
Rn

(Mfj(x))2
dµ MCT

=
∞∑
j=1

‖Mfj‖22

≤ A
∞∑
j=1

‖fj‖22 Theorem 2

= A

∞∑
j=1

∫
Rn

|fj(x)|2dµ

= A

∫
Rn

∞∑
j=1

|fj(x)|2dµ MCT

=
∫

Rn

‖f(x)‖22dµ

= A‖f‖22

We now want to prove (b). It suffices to show (b) when fj(x) ≥ 0 for all x. Apply the Calderon-Zygmund
lemma to the function ‖f(·)‖2. Then we have disjoint sets F and Ω so that Rn = F ∪Ω, ‖f(x)‖2 ≤ α almost

5
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everywhere on F , and Ω = ∪kQk where the Qk’s are cubes whose interiors are mutually disjoint and so that,
for each Qk we have

(1) α <
1

µ(Qk)

∫
Qk

‖f(x)‖2dx ≤ 2nα

Note that the above gives

µ(Qk) <
1
α

∫
Qk

‖f(x)‖2dx

And so

(2) µ(Ω) =
∑
k

µ(Qk) ≤ 1
α

∑
k

∫
Qk

‖f(x)‖2dx ≤
1
α

∫
Rn

‖f(x)‖2dx =
1
α
‖f‖1

Let f ′k = fk1F and f ′′k = fk1Ω. Let f ′ = (f ′1, f
′
2, . . . ) and f ′′ = (f ′′1 , f

′′
2 , . . . ).

Claim 1:
µ
(
{x ∈ Rn : Mf ′(x) > α}

)
≤ A

α
‖f‖1

Clearly ‖f ′(x)‖2 ≤ ‖f(x)‖2 so

‖f ′‖22 =
∫

Rn

‖f ′(x)‖22dx ≤
∫
F

‖f(x)‖22dx ≤ α
∫
F

‖f(x)‖2dx ≤ α‖f‖1

where we used the fact that ‖f(x)‖2 ≤ α on F . Then we have that

(3) ‖Mf ′‖22 ≤ A‖f ′‖22 ≤ α‖f‖1

Note that for a square-integrable function g,

(4) ‖g‖22 =
∫

Rn

|g(x)|dx ≥
∫
x:|f(x)|>α

|f(x)|2dx ≥
∫
x:|f(x)|>α

α2dx = α2µ ({x : |f(x)| > α})

So, if we apply this to M(f ′) and use (3), we get

µ
(
{x ∈ Rn : Mf ′(x) > α}

)
≤ 1
α2
‖Mf ′‖22 ≤

1
α
‖f‖1

Claim 2:
µ
(
{x ∈ Rn : Mf ′′(x) > α}

)
≤ A

α
‖f‖1

Let

f j(x) =

{
1

µ(Qj)

∫
Qj
|fj(y)|dy if x ∈ Qj

0 if x ∈ F

and let f = (f1, f2, . . . ). Let x ∈ Qj . Then

‖f(x)‖2 =

 ∞∑
k=1

(
1

µ(Qj)

∫
Qj

|fk(y)|dy

)2
1/2

=
1

µ(Qj)
‖
∫
Qj

|f.(y)|dy‖2 ≤
1

µ(Qj)

∫
Qj

‖f·(y)‖2dy

where the last inequality comes from Generalized Minkowski. Further, by using (1) we get

1
µ(Qj)

∫
Qj

‖f·(y)‖2dy =
1

µ(Qj)

∫
Qj

( ∞∑
k=1

|fk(y)|2
)1/2

dy ≤ cα

and so ‖f(x)‖2 ≤ cα. If x /∈ Ω then fk(x) = 0 for all k ∈ N and so ‖f(x)‖2 = 0. Then

‖f‖22 =
∫

Rn

‖f(x)‖22dx =
∫

Ω

‖f(x)‖22dx ≤
∫

Ω

c2α2dx = c2α2µ(Ω) ≤ c2α‖f‖1

6
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where we used (2) for the last inequality. We know from the beginning of the proof that ‖Mf‖22 ≤ A‖f‖22
so we have that ‖Mf‖22 ≤ A‖f‖22 ≤ Ac2α‖f‖1. Then by (4), we have

(5) µ
(
{x ∈ Rn : Mf(x) > α}

)
≤ 1
α2
‖Mf‖22 ≤

Ac2

α
‖f‖1

Let Q be a cube in Rn. Let Q̃ denote a cube with the same center as Q but with 2n-times the diameter.
Let Ω̃ = ∪jQ̃j . Then, using (2), we have

(6) µ(Ω̃) = µ(∪jQ̃j) ≤
∑
j

µ(Q̃j) ≤ c
∑
j

µ(Qj) ≤
c

α
‖f‖1

Claim: If x /∈ Ω̃ then Mf ′′k (x) ≤ cMfk(x).
Let Q be a cube containing x. Let J = {j : Qj ∩ Q 6= φ}. Since ∪jQj = Ω, where the Qj ’s have disjoint
interior, we have that Q ∩ Ω = ∪)j ∈ J(Q ∩Qj) and µ(Q ∩ Ω) =

∑
j∈J µ(Q ∩Qj). So

1
µ(Q)

∫
Q

|f ′′k (y)|dy =
1

µ(Q)

∫
Q∩Ω

|f ′′k (y)|dy

=
1

µ(Q)

∑
j∈J

∫
Qj∩Q

|f ′′k (y)|dy

≤ 1
µ(Q)

∑
j∈J

∫
Qj

|f ′′k (y)|dy

=
1

µ(Q)

∑
j∈J

∫
Qj

|fk(y)|dy

=
1

µ(Q)

∑
j∈J

1
µ(Qj)

∫
Qj

|fk(y)|dy
∫
Qj

1dz

=
1

µ(Q)

∑
j∈J

∫
Qj

1
µ(Qj)

∫
Qj

|fk(y)|dydz

=
1

µ(Q)

∑
j∈J

∫
Qj

fk(z)dz

And, for j ∈ J , we have that Qj ∩Q 6= φ and x ∈ Q− Ω̃ ⊆ Q− Q̃j so by Lemma 5 we have that Qj ⊆ Q̃.
Then,

1
µ(Q)

∑
j∈J

∫
Qj

fk(z)dz ≤ 1
µ(Q)

∫
eQ fk(z)dz ≤ c

µ(Q̃)

∫
eQ fk(z)dz ≤ cMfk(x)

So we have that, for all Q containing x, 1
µ(Q)

∫
Q
|f ′′k (y)|dy ≤ cMfk(x) and so

(7) Mf ′′k (x) ≤ cMfk(x)

7
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for all x ∈ Rn − Ω̃. Then, by (5), (6), and (7), we have

µ
(
{x ∈ Rn : Mf ′′(x) > cα}

)
≤ µ

(
{x ∈ Rn − Ω : Mf ′′(x) > cα}

)
+ µ(Ω)

≤ µ
(
{x ∈ Rn − Ω : Mf(x) > α}

)
+ µ(Ω)

≤ A

α
‖f‖1 +

c′

α
‖f‖1

=
c′′

α
‖f‖1

which finishes the proof of claim 2. Now we are ready to prove (b). Recall that f ′ = f1f and f ′′ = f1Ω

where F ∪ Ω = Rn and F ∩ Ω = φ. So, for x ∈ Rn, either f(x) = f ′(x) or f(x) = f ′′(x). So

Mf(x) =

{
Mf ′(x) if x ∈ F
Mf ′′(x) if x ∈ Ω

So,
{x : Mf(x) > α} ⊆ {x : Mf ′(x) > α} ∪ {x : Mf ′′(x) > α}

And so,
µ
(
{x : Mf(x) > α}

)
≤ µ

(
{x : Mf ′(x) > α}

)
+ µ

(
{x : Mf ′′(x) > α}

)
≤ c

α
‖f‖1

which completes the proof of (b). We have now shown that M is weak-(1,1) and strong-(2,2) so, by
Marcinkiewicz, we have thatM is strong-(p,p) for 1 < pleq2 so we are left with proving (c) for the case when
p ≥ 2. By Lemma 6, for q = 2, we have that, for all j,∫

Rn

(Mfj(x))2φ(x)dx ≤ A
∫

Rn

|fj(x)|2Mφ(x)dx

And so
∞∑
j=1

∫
Rn

(Mfj(x))2φ(x)dx ≤ A
∞∑
j=1

∫
Rn

|fj(x)|2Mφ(x)dx

Further,
∞∑
j=1

∫
Rn

(Mfj(x))2φ(x)dx =
∫

Rn

∞∑
j=1

(Mfj(x))2φ(x)dx =
∫

Rn

(
Mf(x)

)2
φ(x)dx

by the Monotone Convergence Theorem. Also,

A

∞∑
j=1

∫
Rn

|fj(x)|2Mφ(x)dx = A

∫
Rn

∞∑
j=1

|fj(x)|2Mφ(x)dx = A

∫
Rn

‖f(x)‖22Mφ(x)dx

again, by the Monotone Convergence Theorem, and so we have that∫
Rn

(
Mf(x)

)2
φ(x)dx ≤ A

∫
Rn

‖f(x)‖22Mφ(x)dx

Let r be the Holder conjugate of p2 (Note: p
2 ≥ 1) since p ≥ 2. Then the above gives

(8) sup
φ∈Lr:‖φ‖≤1

∫
Rn

(
Mf(x)

)2
φ(x)dx ≤ sup

φ∈Lr:‖φ‖≤1

A

∫
Rn

‖f(x)‖22Mφ(x)dx

From our discussion about the dual space of Lp/2 prior to this theorem, we know

sup
φ∈Lr:‖φ‖≤1

∫
Rn

(
Mf(x)

)2
φ(x)dx = ‖

(
Mf

)2 ‖p/2 = ‖Mf‖2p

8
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So from (8) we have

‖Mf‖2p ≤ sup
φ∈Lr:‖φ‖≤1

A

∫
Rn

‖f(x)‖22Mφ(x)dx

≤ sup
φ∈Lr:‖φ‖≤1

A

(∫
Rn

‖f(x)‖2
p
2

2 dx

)2/p(∫
Rn

(Mφ(x))r dx
)1/r

= sup
φ∈Lr:‖φ‖≤1

A‖f‖2p‖Mφ‖r

≤ sup
φ∈Lr:‖φ‖≤1

A‖f‖2pc‖φ‖r

≤ cA‖f‖2p

So we have that ‖Mf‖p ≤ c′‖f‖p, which completes the proof of Theorem 1.
�

9



THE VECTOR-VALUED MAXIMAL FUNCTION MATT ZIEMKE

References

1. C. Fefferman and E.M. Stein, Some Maximal Inequalities, American Journal of Mathematics, Vol. 93
(1971), pp. 107-115

2. Stein, E.M. (1993), Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals.
Princeton: Princeton University Press.

10


