THE VECTOR-VALUED MAXIMAL FUNCTION

MATT ZIEMKE

Let f be a function from R™ into ¢5(R), i.e., f = (f1, f2,...) where f; : R® - R for all 4« =1,2,... and
S0 1 fa(@)|? < oo for all z € R™. Let F(X,Y), where X and Y are sets, denote the set of all functions
from X to Y. Then we define the vector-valued maximal function, M : F(R", /3(R)) — F(R",R) where

1/2
o0

Mf(z) = z:(Mf](x))2 for all x € R"

j=1

where M is the Hardy-Littlewood Maximal function, i.e.,

Mf(x) = sup ﬁB)/B |f(y)ldy

where the supremum is taken over all open balls containing z. We say a function f : R"™ — ¢5(R) is an element
of L,(R™, £5(R)) if each f; is measurable and || f(z)||2 € Lp(R™,R). In this case, we let || f|, = [[[|f()|l2]lp-
The purpose of this paper is to show that M is weak-(1,1) and strong-(p,p) for all 1 < p < oo, i.e., we want
to prove the following theorem.

Theorem 1. (a) If f € L,(R",¢2(R)), 1 <p < oo, then Mf is finite almost everywhere.
(b) If f € L1(R™, ¢2(IR)) then, for every a > 0,

p (o T f(@) > o)) < 217l

(c) If f € L,(R™, £3), 1 <p < oo, then Mf € L,(R",R) and ||[Mf||, < Ayl f|l, for some constant A,.

To prove this theorem, we first need to prove some lemmas and recall some facts about the Hardy-
Littlewood Maximal function.

Theorem 2. Let f be a function from R™ into R.
(a) If fe L,(R"), 1 <p < oo, then Mf is finite almost everywhere.
(b) If f € L1(R™), then for every o > 0,

p({e: Mf(@) > a}) < <[ £l

(¢)If f e L,(R™), 1 <p<oo,then Mf e L,(R") and ||Mf||, < A4, f|l, where A, is a constant depending
on ¢ and p.
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The proof of Theorem 2 is fairly straightforward. First show M is strong-(co, oo) and weak-(1,1) (which
is the statement (b)) then use Marcenkiewicz’s Theorem to show that M is strong-(p,p), for 1 < p < oo,
which gives us (c). Statements (b) and (c) then give (a). The proof that M is strong-(co, oo) is trivial. The
proof that M is weak-(1,1) just follows from Chebyshev and a simple covering lemma which we will now

state since we will need it later on. The proof of the lemma involves a basic greedy argument.

Lemma 3. Let E be a measurable subset of R that is the union of a finite collection of balls {By}7_; =
{Br(zk, €xr)} =1 Then there exists a disjoint subcollection { By, }J; of {By}}_; so that

m

W(E) <3 u(By,)

We will need another covering lemma as well for the proof of Theorem 1, so let us state it now and give

its proof.

Lemma 4: Calderon-Zygmund Lemma. Let f : R®™ — C be non-negative and integrable and let o > 0.
Then there exists sets F' and €2 such that:

(H)R*=FUQ,

(2) |f(2)] < « almost everywhere on F, and

(3) © is a union of cubes; 2 = U, Q) whose interiors are mutually disjoint, and so that, for each @y, we have

that
1

Q)

Proof. Since f € L1(R™), we have that fR" f(x)dx = ¢ < 0o so choose k € Z so that, if @ is a cube in R"
with edge lengths 2% then 1(Q) > £. Then,

o <

/ f@)dx < 2"
Qk

1 1 o}
H(Q)/Qf(x)dx<lu(@/nf(x)dm<60—a

Now, divide R™ into cubes with disjoint interiors whose side lengths are all 2¢ and let @ be such a cube.
Divide Q) into 2" congruent cubes by bisecting each of its sides. Let @' be one of our new subcubes. If
ﬁ fQ/ f(x)dxz > « then let Q" be one of the @ mentioned in the statement of the proof. Note that

! 1 ”L z)dx "o
2@ Jy 10 < iy [ s =2 s [ i <2

If instead, we have that m /. o f(z)dr < o then divide @’ into 2™ congruent cubes and repeat the process.

o <

Let Q = UrQy and F = Q°. Let x € F. Then, for any cube ) constructed in our process which contains z,
we have that ﬁ Jo f(z)dz < o and so

, 1
flz) = dm}%)aom /Q fdy <o ae.

Where the @’s in the limit can be taken as a sequence of cubes from our construction containing x whose

diameters are converging to zero. This completes the proof of our lemma.
O
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We have two more Lemmas to consider before proceeding to the proof of Theorem 1.

Lemma 5. Let @1 and Q2 be cubes in R™ such that Q1 N Q2 # ¢. Let @ denote the cube with the same
center as () but with 2n-times the diameter. Then, either Q1 C Q)2 or Q)2 C Q1.

Proof. Suppose diam(Q1) < diam(Q2), then we claim that @ C @vg The case when n = 1 is trivial so
suppose . > 2. Also, we can assume that @ is centered at the origin. Let Q2 = [5°, 5]™ where s is the length
of the edges of Q2. Then @vg = [—sn,sn|™. Since @1 N Q2 # ¢, let y € Q1 N Q2. Let y = (Y1,Y2,---,Yn)-
Since y € Q2 we have that 5* <y; < J foralli=1,...,n. Let x = (x1,22,...,2,) € Q1. Since y € Q1
we have that d(x,y) < diam(Q1) < diam(Q2). Suppose x ¢ @; Then there exists £ = 1,...,n so that

|zx| > sn. Since |r3| > sn and |yx| < § we have that
s
ok =yl = o] = lyll = [sn - §|

and so (z — yp)? > (sn— $)%. Let a = (a1,...,a,), b= (b1,...b,) € Q2. Then,

d(a7 b)2 = (a1 — b1)2 + (Clz — b2)2 + -+ (a, — bn)2

S S S S

<3 %2, (%5 8 Syo
_(2+2) +(2+2)+ +(2+2)
=s’n
So, diam(Q2) < sy/n. By considering a = (5,5,...,35) and b = (5%, 5*,..., 5>) we see that we actually
have diam(Q2) = sy/n. Then,
s 1

d(x,y) = ((I1 ) (2, — %)2)1/2 > ((l‘k — yk)2)1/2 > sn— o= s( ) > sv/n = diam(Q>)

n— =
2
where s(n — ) > s\/n because n > 2. This clearly contradicts the fact that d(z,y) < diam(Q2) so we must

have that x € QNQ and the proof is complete.
|

Lemma 6. Let f and ¢ be positive real-valued functions on R™ and let ¢ > 1. Then

[ tsayswis <5, [ s

n

for some constant B,. Further,

A
/{m:Mf(m)>a} ¢(-T)d$ < o /” |f(x)M¢(aj)d$

for some constant A.

Proof. Let ¢ be a positive real-valued function on R™. We can then define a measure, say v, on R" by
letting v(E) = [, ¢(x)dz for all y-measurable sets E. Note then, for a function f, that [, f(z)dv(z) =

Jgn f(x)@(x)dx. Similarly, we can define a measure p on R by letting p(E) = [, M¢(x)dz. Consider
3
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M : Loo(R™, p) = Lo (R™,v). Let f € Loo(R™, p). Then
1
Mfllp. ) =ess sup sup—/ f(y)|dy
M sy =55 sup swp s | 150
1

< ess sup Supi/ 112 )y
z€R™ zEQ ,U/(Q> Q v

1
=ess sup sup ——
z€R™ z€Q N(Q)

1l 2o () (@)
= 1l 2o o)
So we have that M is strong-(co, co) with respect to p and v. Let E, = {z : M f(z) > o} and let E be a
compact subset of E,. Let € E. Then there exists B(z,¢,) so that x € B(x,¢,) and
v ),
—— [f(y)ldy > o
:U(B(x7 636)) B(x,eq)

which gives that

1
pBee) <5 [ iy
@ JB(x,e,)
Then, {B(z, €.} is an open cover of E, so there exists a finite subecover, say B(z1,¢€1),. .., B(zk, ;). Then,
by Lemma 3, we can select a disjoint collection B(x1,€1),..., B(Zm, €m) (where we allow for re-indexing) of

the above finite collection, so that &2 C U7T", B(z;, 3¢;). Well,

[ st = [ 176) (u(lB) / ¢<z>dz) dy = (,,L<13> / f<y>|dy) ( / ¢<z>dz) > [ o

Then, we have

v(E) <Y v (B(x,3¢))

<Ay [ @y by above

a Jrn

A
= allfllm(p)

Since this is true for all compact subsets of E,, we have that v/(E,) < 2|/ f||1,(,), and so M is weak-(1,1) with
respect to v and p. Therefore, by Marcinkiewicz, we have that M : L,(R"™, p) — L,(R"™,v) is strong-(p,p)

([ arrwr aw) Ve (L. |f<y>|Pdp<y>)1/p

forall 1 < p < o0, ie.,
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And so,
| otr@yowis <c, [ 15@rMsws

which completes the proof of Lemma 6.
|

Before proceeding to the proof of Theorem 1, a remark is in order. For a Banach space X, let X* denote
the dual of X, i.e., X* is the set of all bounded linear functionals on X. Let p,q > 1 be Holder conjugates.
Then it is a well known fact that L,(R") is isometrically isomorphic to L (]R”)* Further for f € L,(R™),
its "representation", say ¢, as a member of Lq(R™)* is given by ¢(g) = [p. g(x)f(2)dz. Let || - ||z denote
the operator norm on L,(R™)*. Then we have that

1flly = lleslle = sup{les(9)] : g € Ly(R™), gl <1} = Sup{\/ (z)dx| : g € Ly(R™), [lgll <1}

We will use this equality later in the proof of Theorem 1. Let us restate the theorem again.

Theorem 1. (a) If f € L,(R",¢2(R)), 1 < p < oo, then M f is finite almost everywhere.
(b) If f € L1(R™, ¢2(R)) then, for every a > 0,

p (e i) > a}) < 21l

(c) If f € L,(R™, 43), 1 <p < oo, then M f € L,(R",R) and ||Mf||, < Ayl f|l, for some constant A,.

Proof. We will start by proving (c) for p = 2.
1/2\ 2

= [ | (S orne dn

j=1

= [ s dn MCT
< AZ ||fJH% Theorem 2

_ . 2
—A/Rn;wn du MCT

= [ 1@
R
— A1

We now want to prove (b). It suffices to show (b) when f;(z) > 0 for all z. Apply the Calderon-Zygmund

lemma to the function ||f(-)||2. Then we have disjoint sets F' and € so that R" = FUQ, ||f(z)]]2 < « almost
5
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everywhere on F, and Q2 = U, Q) where the QQ’s are cubes whose interiors are mutually disjoint and so that,

for each O, we have

1 n
(1) o< u@)/Q 1£(@)]l2dz < 2"

Note that the above gives
1
W@ < % [ 1f@)ado
@ JQu
And so

) P MCEE Z/ £ @)lada < 2 [ 1f(@)lade = 2151,

Let f], = felp and f;! = felq. Let f' = (f1, f5,...) and f"" = (f{, f5,...)-
Claim 1:

— A
p({o e R @) > a}) < ZIfh
Clearly | (@)ll2 < (@2 s0
118 = | Wr@igde < [ 17@I3de <o [ 15@)lde < alfl,

where we used the fact that || f(z)||2 < a on F. Then we have that

(3) IMf'II5 < Allf'13 < allflh

Note that for a square-integrable function g,
@ o= [ le@lez [ jf@Pdez [ atde=a®u(fe: |f@)] > a)

R™ z:| f(z)|>a z:| f(z)|>a
So, if we apply this to M (f’) and use (3), we get
p({z eR": Mf'(x) > a}) < *IIMf [ *||f||1
Claim 2: 4
p({x eR": Mf"(x) > a}) < Il

Let

L =10 ifreF
and let f = (fy, fs,...). Let z € Q;. Then

9\ 1/2
_ > 1 1
[f(@)]2= (; (/M /Qj Ifk(y)ldy> ) (QJ)H 0, Lf-()ldyll2 < u(QJ)/Q 1f-(v)ll2dy

where the last inequality comes from Generalized Minkowski. Further, by using (1) we get

0o 1/2
2 o1 : .
w(Qj) /Qj 1f-(y)ll2dy = Q) /Qj <l§|fk(y)| ) dy <

and so ||f(7)||2 < ca. If z ¢ Q then f,(z) =0 for all k € N and so |[f(z)||2 = 0. Then

1715 = [ I7@lde = [ [F@de < [ Gatde = au) < Cal s
6

f - { M(Q;) fQ] Ifi(y)ldy ifzeQ;
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where we used (2) for the last inequality. We know from the beginning of the proof that |[Mf||2 < Al f|3
so we have that ||Mf||2 < A|f||3 < Ac?al|f||;. Then by (4), we have

_ _ Ac?
(5) p({r € R TT(@) > a}) < 5 INTIR < 211/

Let @ be a cube in R”. Let @ denote a cube with the same center as ) but with 2n-times the diameter.
Let Q = U;Q;. Then, using (2), we have

©) p(@) = p0,3) < Y@ < e Y@ < Il
Claim: If z ¢ € then M f!(x) < eMf(z).

Let @ be a cube containing z. Let J = {j : Q; N Q # ¢}. Since U,;Q; = 2, where the @Q;’s have disjoint
interior, we have that QN Q =U)j € J(QNQ;) and p(Q N Q) =, ; u(QNQ; ). So

1 " _ 1 "
mte) /Q \fk<y>|dy——u(® /Q 2 )| dy
d
e AL

]EJ

| fx (y)|dy
;/

| fe(y)|dy
@ o

1 1
:m;u@j)/@ |fk<y>|dy/Q1dz

J

1 1
= mZ/ ‘ Q) / v |fx(y)|dydz
Z

]EJ

And, for j € J, we have that QjﬂQ#d)and:cGQngQf@Vj so by Lemma 5 we have that @Q; Q@.

Then,
oz, /fk 5 LT <M
j€ J

So we have that, for all () containing z, fQ Lf7 (y)dy < chk( ) and so

(7) Mfk () < eMf()
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for all z € R™ — Q. Then, by (5), (6), and (7), we have
p({zeR": Mf"(z) >ca}) <p({fz e R" —Q: Mf"(z) > cal) + p(Q)
< (e € R~ TTF(x) > a}) + p(@)

A c
270+ Sy

IN

o
= —|flh
(e

which finishes the proof of claim 2. Now we are ready to prove (b). Recall that f' = f1y and f” = flg
where FUQ =R" and FNQ = ¢. So, for x € R", either f(z) = f'(x) or f(z) = f"(x). So

_ Mf(z) ifzeF
M) = { M) ifzeQ
So,
{x:Mf(x)>a} C{z: Mf'(z) >a}U{z: Mf"(z) > a}
And so,

p(fa: Mf(@) > a}) < p({a: Mf (@) > a}) +p ({o: M (@) > a}) < <[ £

which completes the proof of (b). We have now shown that M is weak-(1,1) and strong-(2,2) so, by
Marcinkiewicz, we have that M is strong-(p,p) for 1 < pleq2 so we are left with proving (c) for the case when

p > 2. By Lemma 6, for ¢ = 2, we have that, for all j,
| 5@ < 4 [ 1@ Mo
And so - -
Mf;(z)?¢p(x)dx < A ()P M ¢ (x)d
Z/( (@) ola)de < 2/ 3P Mo(a)da
Further,

3 (1)) ¢ (a)de = 3 (2)?p(z)dx = M () o(x)da
;/Rn(Mf;( ))?(x)d /Rn;(ij( ))2é(x)d /n(Mf( ) 6(a)d

by the Monotone Convergence Theorem. Also,
AY [ 1@ Py = 4 [ S IR@EMo@d = A [ If@)EMo)d
j=17%" "=t "

again, by the Monotone Convergence Theorem, and so we have that

| @s@) storte < 4 [ |r@lEdole)ds

R™

Let r be the Holder conjugate of £ (Note: & > 1) since p > 2. Then the above gives

— 2

®) swp [ (Tf@) oo swp 4 [ f(@)3M6()s
seL,llg)<1Jrn ¢eL,llgl<t  Jrn

From our discussion about the dual space of L,/ prior to this theorem, we know

sup (M f(2))? d(x)de = || (VL F)? /2 = [DLf))2
¢EL.:||p|<1 JR™
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So from (8) we have

IMFI; < sup A [ ||f(2)3Mo(x)dx
pelr:|lol<t  JR"

< s a(f i) ([ o)

= sup A||fIFIIMe].
peL,:||l|<1

< sup  Alflpeloll,
peL:[gll<1

< cAlfl;

So we have that || M f||, < ¢ f|lp, which completes the proof of Theorem 1.
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