

THE VECTOR-VALUED MAXIMAL FUNCTION

MATT ZIEMKE

Let f be a function from \mathbb{R}^n into $\ell_2(\mathbb{R})$, i.e., $f = (f_1, f_2, \dots)$ where $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$ for all $i = 1, 2, \dots$ and $\sum_{n=1}^{\infty} |f_n(x)|^2 < \infty$ for all $x \in \mathbb{R}^n$. Let $\mathcal{F}(X, Y)$, where X and Y are sets, denote the set of all functions from X to Y . Then we define the vector-valued maximal function, $\overline{M} : \mathcal{F}(\mathbb{R}^n, \ell_2(\mathbb{R})) \rightarrow \mathcal{F}(\mathbb{R}^n, \mathbb{R})$ where

$$\overline{M}f(x) = \left(\sum_{j=1}^{\infty} (Mf_j(x))^2 \right)^{1/2} \quad \text{for all } x \in \mathbb{R}^n$$

where M is the Hardy-Littlewood Maximal function, i.e.,

$$Mf(x) = \sup_B \frac{1}{\mu(B)} \int_B |f(y)| dy$$

where the supremum is taken over all open balls containing x . We say a function $f : \mathbb{R}^n \rightarrow \ell_2(\mathbb{R})$ is an element of $L_p(\mathbb{R}^n, \ell_2(\mathbb{R}))$ if each f_j is measurable and $\|f(x)\|_2 \in L_p(\mathbb{R}^n, \mathbb{R})$. In this case, we let $\|f\|_p = \|\|f(\cdot)\|_2\|_p$. The purpose of this paper is to show that \overline{M} is weak-(1,1) and strong-(p,p) for all $1 < p < \infty$, i.e., we want to prove the following theorem.

Theorem 1. (a) If $f \in L_p(\mathbb{R}^n, \ell_2(\mathbb{R}))$, $1 \leq p < \infty$, then $\overline{M}f$ is finite almost everywhere.

(b) If $f \in L_1(\mathbb{R}^n, \ell_2(\mathbb{R}))$ then, for every $\alpha > 0$,

$$\mu(\{x : \overline{M}f(x) > \alpha\}) \leq \frac{A}{\alpha} \|f\|_1$$

(c) If $f \in L_p(\mathbb{R}^n, \ell_2)$, $1 < p < \infty$, then $\overline{M}f \in L_p(\mathbb{R}^n, \mathbb{R})$ and $\|\overline{M}f\|_p \leq A_p \|f\|_p$ for some constant A_p .

To prove this theorem, we first need to prove some lemmas and recall some facts about the Hardy-Littlewood Maximal function.

Theorem 2. Let f be a function from \mathbb{R}^n into \mathbb{R} .

(a) If $f \in L_p(\mathbb{R}^n)$, $1 \leq p \leq \infty$, then Mf is finite almost everywhere.

(b) If $f \in L_1(\mathbb{R}^n)$, then for every $\alpha > 0$,

$$\mu(\{x : Mf(x) > \alpha\}) \leq \frac{c}{\alpha} \|f\|_1$$

(c) If $f \in L_p(\mathbb{R}^n)$, $1 < p \leq \infty$, then $Mf \in L_p(\mathbb{R}^n)$ and $\|Mf\|_p \leq A_p \|f\|_p$ where A_p is a constant depending on c and p .

The proof of Theorem 2 is fairly straightforward. First show M is strong- (∞, ∞) and weak- $(1,1)$ (which is the statement (b)) then use Marcinkiewicz's Theorem to show that M is strong- (p,p) , for $1 < p \leq \infty$, which gives us (c). Statements (b) and (c) then give (a). The proof that M is strong- (∞, ∞) is trivial. The proof that M is weak- $(1,1)$ just follows from Chebyshev and a simple covering lemma which we will now state since we will need it later on. The proof of the lemma involves a basic greedy argument.

Lemma 3. Let E be a measurable subset of \mathbb{R}^n that is the union of a finite collection of balls $\{B_k\}_{k=1}^n = \{B_k(x_k, \epsilon_k)\}_{k=1}^n$. Then there exists a disjoint subcollection $\{B_{k_j}\}_{j=1}^m$ of $\{B_k\}_{k=1}^n$ so that

$$\mu(E) \leq 3^n \sum_{j=1}^m \mu(B_{k_j})$$

We will need another covering lemma as well for the proof of Theorem 1, so let us state it now and give its proof.

Lemma 4: Calderon-Zygmund Lemma. Let $f : \mathbb{R}^n \rightarrow \mathbb{C}$ be non-negative and integrable and let $\alpha > 0$. Then there exists sets F and Ω such that:

- (1) $\mathbb{R}^n = F \cup \Omega$,
- (2) $|f(x)| \leq \alpha$ almost everywhere on F , and
- (3) Ω is a union of cubes; $\Omega = \cup_k Q_k$ whose interiors are mutually disjoint, and so that, for each Q_k , we have that

$$\alpha < \frac{1}{\mu(Q_k)} \int_{Q_k} f(x) dx \leq 2^n \alpha$$

Proof. Since $f \in L_1(\mathbb{R}^n)$, we have that $\int_{\mathbb{R}^n} f(x) dx = c < \infty$ so choose $k \in \mathbb{Z}$ so that, if Q is a cube in \mathbb{R}^n with edge lengths 2^k then $\mu(Q) > \frac{c}{\alpha}$. Then,

$$\frac{1}{\mu(Q)} \int_Q f(x) dx \leq \frac{1}{\mu(Q)} \int_{\mathbb{R}^n} f(x) dx \leq \frac{\alpha}{c} c = \alpha$$

Now, divide \mathbb{R}^n into cubes with disjoint interiors whose side lengths are all 2^k and let Q be such a cube. Divide Q into 2^n congruent cubes by bisecting each of its sides. Let Q' be one of our new subcubes. If $\frac{1}{\mu(Q')} \int_{Q'} f(x) dx > \alpha$ then let Q' be one of the Q_k mentioned in the statement of the proof. Note that

$$\alpha < \frac{1}{\mu(Q')} \int_{Q'} f(x) dx \leq \frac{1}{\mu(Q')} \int_Q f(x) dx = 2^n \frac{1}{\mu(Q)} \int_Q f(x) dx \leq 2^n \alpha$$

If instead, we have that $\frac{1}{\mu(Q')} \int_{Q'} f(x) dx \leq \alpha$ then divide Q' into 2^n congruent cubes and repeat the process. Let $\Omega = \cup_k Q_k$ and $F = \Omega^c$. Let $x \in F$. Then, for any cube Q constructed in our process which contains x , we have that $\frac{1}{\mu(Q)} \int_Q f(x) dx \leq \alpha$ and so

$$f(x) = \lim_{\text{diam}(Q) \rightarrow 0} \frac{1}{\mu(Q)} \int_Q f(y) dy \leq \alpha \quad \text{a.e.}$$

Where the Q 's in the limit can be taken as a sequence of cubes from our construction containing x whose diameters are converging to zero. This completes the proof of our lemma. \square

We have two more Lemmas to consider before proceeding to the proof of Theorem 1.

Lemma 5. Let Q_1 and Q_2 be cubes in \mathbb{R}^n such that $Q_1 \cap Q_2 \neq \emptyset$. Let \tilde{Q} denote the cube with the same center as Q but with $2n$ -times the diameter. Then, either $Q_1 \subseteq \tilde{Q}_2$ or $Q_2 \subseteq \tilde{Q}_1$.

Proof. Suppose $\text{diam}(Q_1) \leq \text{diam}(Q_2)$, then we claim that $Q_1 \subseteq \tilde{Q}_2$. The case when $n = 1$ is trivial so suppose $n \geq 2$. Also, we can assume that Q_2 is centered at the origin. Let $Q_2 = [\frac{-s}{2}, \frac{s}{2}]^n$ where s is the length of the edges of Q_2 . Then $\tilde{Q}_2 = [-sn, sn]^n$. Since $Q_1 \cap Q_2 \neq \emptyset$, let $y \in Q_1 \cap Q_2$. Let $y = (y_1, y_2, \dots, y_n)$. Since $y \in Q_2$ we have that $\frac{-s}{2} \leq y_i \leq \frac{s}{2}$ for all $i = 1, \dots, n$. Let $x = (x_1, x_2, \dots, x_n) \in Q_1$. Since $y \in Q_1$ we have that $d(x, y) \leq \text{diam}(Q_1) \leq \text{diam}(Q_2)$. Suppose $x \notin \tilde{Q}_2$. Then there exists $k = 1, \dots, n$ so that $|x_k| > sn$. Since $|x_k| > sn$ and $|y_k| \leq \frac{s}{2}$ we have that

$$|x_k - y_k| \geq ||x_k| - |y_k|| \geq |sn - \frac{s}{2}|$$

and so $(x_k - y_k)^2 \geq (sn - \frac{s}{2})^2$. Let $a = (a_1, \dots, a_n)$, $b = (b_1, \dots, b_n) \in Q_2$. Then,

$$\begin{aligned} d(a, b)^2 &= (a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2 \\ &\leq (\frac{s}{2} + \frac{s}{2})^2 + (\frac{s}{2} + \frac{s}{2})^2 + \dots + (\frac{s}{2} + \frac{s}{2})^2 \\ &= s^2 n \end{aligned}$$

So, $\text{diam}(Q_2) \leq s\sqrt{n}$. By considering $a = (\frac{s}{2}, \frac{s}{2}, \dots, \frac{s}{2})$ and $b = (\frac{-s}{2}, \frac{-s}{2}, \dots, \frac{-s}{2})$ we see that we actually have $\text{diam}(Q_2) = s\sqrt{n}$. Then,

$$d(x, y) = ((x_1 - y_1)^2 + \dots + (x_n - y_n)^2)^{1/2} \geq ((x_k - y_k)^2)^{1/2} \geq sn - \frac{s}{n} = s(n - \frac{1}{2}) > s\sqrt{n} = \text{diam}(Q_2)$$

where $s(n - \frac{1}{2}) > s\sqrt{n}$ because $n > 2$. This clearly contradicts the fact that $d(x, y) \leq \text{diam}(Q_2)$ so we must have that $x \in \tilde{Q}_2$ and the proof is complete. \square

Lemma 6. Let f and ϕ be positive real-valued functions on \mathbb{R}^n and let $q > 1$. Then

$$\int_{\mathbb{R}^n} (Mf(x))^q \phi(x) dx \leq B_q \int_{\mathbb{R}^n} |f(x)|^q M\phi(x) dx$$

for some constant B_q . Further,

$$\int_{\{x: Mf(x) > \alpha\}} \phi(x) dx \leq \frac{A}{\alpha} \int_{\mathbb{R}^n} |f(x)| M\phi(x) dx$$

for some constant A .

Proof. Let ϕ be a positive real-valued function on \mathbb{R}^n . We can then define a measure, say ν , on \mathbb{R}^n by letting $\nu(E) = \int_E \phi(x) dx$ for all μ -measurable sets E . Note then, for a function f , that $\int_{\mathbb{R}^n} f(x) d\nu(x) = \int_{\mathbb{R}^n} f(x) \phi(x) dx$. Similarly, we can define a measure ρ on \mathbb{R}^n by letting $\rho(E) = \int_E M\phi(x) dx$. Consider

$M : L_\infty(\mathbb{R}^n, \rho) \rightarrow L_\infty(\mathbb{R}^n, \nu)$. Let $f \in L_\infty(\mathbb{R}^n, \rho)$. Then

$$\begin{aligned} \|Mf\|_{L_\infty(\nu)} &= \text{ess} \sup_{x \in \mathbb{R}^n} \sup_{x \in Q} \frac{1}{\mu(Q)} \int_Q |f(y)| dy \\ &\leq \text{ess} \sup_{x \in \mathbb{R}^n} \sup_{x \in Q} \frac{1}{\mu(Q)} \int_Q \|f\|_{L_\infty(\rho)} dy \\ &= \text{ess} \sup_{x \in \mathbb{R}^n} \sup_{x \in Q} \frac{1}{\mu(Q)} \|f\|_{L_\infty(\rho)} \mu(Q) \\ &= \|f\|_{L_\infty(\rho)} \end{aligned}$$

So we have that M is strong- (∞, ∞) with respect to ρ and ν . Let $E_\alpha = \{x : Mf(x) > \alpha\}$ and let E be a compact subset of E_α . Let $x \in E$. Then there exists $B(x, \epsilon_x)$ so that $x \in B(x, \epsilon_x)$ and

$$\frac{1}{\mu(B(x, \epsilon_x))} \int_{B(x, \epsilon_x)} |f(y)| dy > \alpha$$

which gives that

$$\mu(B(x, \epsilon_x)) < \frac{1}{\alpha} \int_{B(x, \epsilon_x)} |f(y)| dy$$

Then, $\{B(x, \epsilon_x)\}$ is an open cover of E , so there exists a finite subcover, say $B(x_1, \epsilon_1), \dots, B(x_m, \epsilon_m)$. Then, by Lemma 3, we can select a disjoint collection $B(x_1, \epsilon_1), \dots, B(x_m, \epsilon_m)$ (where we allow for re-indexing) of the above finite collection, so that $E \subseteq \bigcup_{j=1}^m B(x_j, 3\epsilon_j)$. Well,

$$\int_B |f(y)| M\phi(y) dy \geq \int_B |f(y)| \left(\frac{1}{\mu(B)} \int_B \phi(z) dz \right) dy = \left(\frac{1}{\mu(B)} \int_B |f(y)| dy \right) \left(\int_B \phi(z) dz \right) \geq \alpha \int_B \phi(z) dz$$

Then, we have

$$\begin{aligned} \nu(E) &\leq \sum_{j=1}^m \nu(B(x_j, 3\epsilon_j)) \\ &\leq A \sum_{j=1}^m \nu(B(x_j, \epsilon_j)) \\ &= A \sum_{j=1}^m \int_{B(x_j, \epsilon_j)} \phi(y) dy \\ &\leq A \sum_{j=1}^m \frac{1}{\alpha} \int_{B(x_j, \epsilon_j)} |f(y)| M\phi(y) dy && \text{by above} \\ &\leq \frac{A}{\alpha} \int_{\mathbb{R}^n} |f(y)| M\phi(y) dy \\ &= \frac{A}{\alpha} \|f\|_{L_1(\rho)} \end{aligned}$$

Since this is true for all compact subsets of E_α , we have that $\nu(E_\alpha) \leq \frac{A}{\alpha} \|f\|_{L_1(\rho)}$, and so M is weak- $(1,1)$ with respect to ν and μ . Therefore, by Marcinkiewicz, we have that $M : L_p(\mathbb{R}^n, \rho) \rightarrow L_p(\mathbb{R}^n, \nu)$ is strong- (p,p) for all $1 < p \leq \infty$, i.e.,

$$\left(\int_{\mathbb{R}^n} (Mf(y))^p d\nu(y) \right)^{1/p} \leq c \left(\int_{\mathbb{R}^n} |f(y)|^p d\rho(y) \right)^{1/p}$$

And so,

$$\int_{\mathbb{R}^n} (Mf(x))^p \phi(x) dx \leq c_p \int_{\mathbb{R}^n} |f(x)|^p M\phi(x) dx$$

which completes the proof of Lemma 6. \square

Before proceeding to the proof of Theorem 1, a remark is in order. For a Banach space X , let X^* denote the dual of X , i.e., X^* is the set of all bounded linear functionals on X . Let $p, q \geq 1$ be Holder conjugates. Then it is a well known fact that $L_p(\mathbb{R}^n)$ is isometrically isomorphic to $L_q(\mathbb{R}^n)^*$. Further, for $f \in L_p(\mathbb{R}^n)$, its "representation", say φ_f , as a member of $L_q(\mathbb{R}^n)^*$ is given by $\varphi_f(g) = \int_{\mathbb{R}^n} g(x)f(x) dx$. Let $\|\cdot\|_L$ denote the operator norm on $L_q(\mathbb{R}^n)^*$. Then we have that

$$\|f\|_p = \|\varphi_f\|_L = \sup\{|\varphi_f(g)| : g \in L_q(\mathbb{R}^n), \|g\| \leq 1\} = \sup\{|\int_{\mathbb{R}^n} g(x)f(x) dx| : g \in L_q(\mathbb{R}^n), \|g\| \leq 1\}$$

We will use this equality later in the proof of Theorem 1. Let us restate the theorem again.

Theorem 1. (a) If $f \in L_p(\mathbb{R}^n, \ell_2(\mathbb{R}))$, $1 \leq p < \infty$, then $\overline{M}f$ is finite almost everywhere.

(b) If $f \in L_1(\mathbb{R}^n, \ell_2(\mathbb{R}))$ then, for every $\alpha > 0$,

$$\mu(\{x : \overline{M}f(x) > \alpha\}) \leq \frac{A}{\alpha} \|f\|_1$$

(c) If $f \in L_p(\mathbb{R}^n, \ell_2)$, $1 < p < \infty$, then $\overline{M}f \in L_p(\mathbb{R}^n, \mathbb{R})$ and $\|\overline{M}f\|_p \leq A_p \|f\|_p$ for some constant A_p .

Proof. We will start by proving (c) for $p = 2$.

$$\begin{aligned} \|\overline{M}f\|_2^2 &= \int_{\mathbb{R}^n} \left(\left(\sum_{j=1}^{\infty} (Mf_j(x))^2 \right)^{1/2} \right)^2 d\mu \\ &= \sum_{j=1}^{\infty} \int_{\mathbb{R}^n} (Mf_j(x))^2 d\mu && \text{MCT} \\ &= \sum_{j=1}^{\infty} \|Mf_j\|_2^2 \\ &\leq A \sum_{j=1}^{\infty} \|f_j\|_2^2 && \text{Theorem 2} \\ &= A \sum_{j=1}^{\infty} \int_{\mathbb{R}^n} |f_j(x)|^2 d\mu \\ &= A \int_{\mathbb{R}^n} \sum_{j=1}^{\infty} |f_j(x)|^2 d\mu && \text{MCT} \\ &= \int_{\mathbb{R}^n} \|f(x)\|_2^2 d\mu \\ &= A \|f\|_2^2 \end{aligned}$$

We now want to prove (b). It suffices to show (b) when $f_j(x) \geq 0$ for all x . Apply the Calderon-Zygmund lemma to the function $\|f(\cdot)\|_2$. Then we have disjoint sets F and Ω so that $\mathbb{R}^n = F \cup \Omega$, $\|f(x)\|_2 \leq \alpha$ almost

everywhere on F , and $\Omega = \cup_k Q_k$ where the Q_k 's are cubes whose interiors are mutually disjoint and so that, for each Q_k we have

$$(1) \quad \alpha < \frac{1}{\mu(Q_k)} \int_{Q_k} \|f(x)\|_2 dx \leq 2^n \alpha$$

Note that the above gives

$$\mu(Q_k) < \frac{1}{\alpha} \int_{Q_k} \|f(x)\|_2 dx$$

And so

$$(2) \quad \mu(\Omega) = \sum_k \mu(Q_k) \leq \frac{1}{\alpha} \sum_k \int_{Q_k} \|f(x)\|_2 dx \leq \frac{1}{\alpha} \int_{\mathbb{R}^n} \|f(x)\|_2 dx = \frac{1}{\alpha} \|f\|_1$$

Let $f'_k = f_k 1_F$ and $f''_k = f_k 1_\Omega$. Let $f' = (f'_1, f'_2, \dots)$ and $f'' = (f''_1, f''_2, \dots)$.

Claim 1:

$$\mu(\{x \in \mathbb{R}^n : \overline{M}f'(x) > \alpha\}) \leq \frac{A}{\alpha} \|f\|_1$$

Clearly $\|f'(x)\|_2 \leq \|f(x)\|_2$ so

$$\|f'\|_2^2 = \int_{\mathbb{R}^n} \|f'(x)\|_2^2 dx \leq \int_F \|f(x)\|_2^2 dx \leq \alpha \int_F \|f(x)\|_2 dx \leq \alpha \|f\|_1$$

where we used the fact that $\|f(x)\|_2 \leq \alpha$ on F . Then we have that

$$(3) \quad \|\overline{M}f'\|_2^2 \leq A \|f'\|_2^2 \leq \alpha \|f\|_1$$

Note that for a square-integrable function g ,

$$(4) \quad \|g\|_2^2 = \int_{\mathbb{R}^n} |g(x)| dx \geq \int_{x:|f(x)|>\alpha} |f(x)|^2 dx \geq \int_{x:|f(x)|>\alpha} \alpha^2 dx = \alpha^2 \mu(\{x : |f(x)| > \alpha\})$$

So, if we apply this to $\overline{M}(f')$ and use (3), we get

$$\mu(\{x \in \mathbb{R}^n : \overline{M}f'(x) > \alpha\}) \leq \frac{1}{\alpha^2} \|\overline{M}f'\|_2^2 \leq \frac{1}{\alpha} \|f\|_1$$

Claim 2:

$$\mu(\{x \in \mathbb{R}^n : \overline{M}f''(x) > \alpha\}) \leq \frac{A}{\alpha} \|f\|_1$$

Let

$$\bar{f}_j(x) = \begin{cases} \frac{1}{\mu(Q_j)} \int_{Q_j} |f_j(y)| dy & \text{if } x \in Q_j \\ 0 & \text{if } x \in F \end{cases}$$

and let $\bar{f} = (\bar{f}_1, \bar{f}_2, \dots)$. Let $x \in Q_j$. Then

$$\|\bar{f}(x)\|_2 = \left(\sum_{k=1}^{\infty} \left(\frac{1}{\mu(Q_j)} \int_{Q_j} |f_k(y)| dy \right)^2 \right)^{1/2} = \frac{1}{\mu(Q_j)} \left\| \int_{Q_j} |f_k(y)| dy \right\|_2 \leq \frac{1}{\mu(Q_j)} \int_{Q_j} \|f_k(y)\|_2 dy$$

where the last inequality comes from Generalized Minkowski. Further, by using (1) we get

$$\frac{1}{\mu(Q_j)} \int_{Q_j} \|f_k(y)\|_2 dy = \frac{1}{\mu(Q_j)} \int_{Q_j} \left(\sum_{k=1}^{\infty} |f_k(y)|^2 \right)^{1/2} dy \leq c\alpha$$

and so $\|\bar{f}(x)\|_2 \leq c\alpha$. If $x \notin \Omega$ then $\bar{f}_k(x) = 0$ for all $k \in \mathbb{N}$ and so $\|\bar{f}(x)\|_2 = 0$. Then

$$\|\bar{f}\|_2^2 = \int_{\mathbb{R}^n} \|\bar{f}(x)\|_2^2 dx = \int_{\Omega} \|\bar{f}(x)\|_2^2 dx \leq \int_{\Omega} c^2 \alpha^2 dx = c^2 \alpha^2 \mu(\Omega) \leq c^2 \alpha^2 \|f\|_1$$

where we used (2) for the last inequality. We know from the beginning of the proof that $\|\overline{Mf}\|_2^2 \leq A\|\overline{f}\|_2^2$ so we have that $\|\overline{Mf}\|_2^2 \leq A\|\overline{f}\|_2^2 \leq Ac^2\alpha\|\overline{f}\|_1$. Then by (4), we have

$$(5) \quad \mu(\{x \in \mathbb{R}^n : \overline{Mf}(x) > \alpha\}) \leq \frac{1}{\alpha^2} \|\overline{Mf}\|_2^2 \leq \frac{Ac^2}{\alpha} \|f\|_1$$

Let Q be a cube in \mathbb{R}^n . Let \tilde{Q} denote a cube with the same center as Q but with $2n$ -times the diameter. Let $\tilde{\Omega} = \cup_j \tilde{Q}_j$. Then, using (2), we have

$$(6) \quad \mu(\tilde{\Omega}) = \mu(\cup_j \tilde{Q}_j) \leq \sum_j \mu(\tilde{Q}_j) \leq c \sum_j \mu(Q_j) \leq \frac{c}{\alpha} \|f\|_1$$

Claim: If $x \notin \tilde{\Omega}$ then $Mf_k''(x) \leq cM\overline{f}_k(x)$.

Let Q be a cube containing x . Let $J = \{j : Q_j \cap Q \neq \emptyset\}$. Since $\cup_j Q_j = \Omega$, where the Q_j 's have disjoint interior, we have that $Q \cap \Omega = \cup_j Q_j \in J(Q \cap Q_j)$ and $\mu(Q \cap \Omega) = \sum_{j \in J} \mu(Q \cap Q_j)$. So

$$\begin{aligned} \frac{1}{\mu(Q)} \int_Q |f_k''(y)| dy &= \frac{1}{\mu(Q)} \int_{Q \cap \Omega} |f_k''(y)| dy \\ &= \frac{1}{\mu(Q)} \sum_{j \in J} \int_{Q_j \cap Q} |f_k''(y)| dy \\ &\leq \frac{1}{\mu(Q)} \sum_{j \in J} \int_{Q_j} |f_k''(y)| dy \\ &= \frac{1}{\mu(Q)} \sum_{j \in J} \int_{Q_j} |f_k(y)| dy \\ &= \frac{1}{\mu(Q)} \sum_{j \in J} \frac{1}{\mu(Q_j)} \int_{Q_j} |f_k(y)| dy \int_{Q_j} 1 dz \\ &= \frac{1}{\mu(Q)} \sum_{j \in J} \int_{Q_j} \frac{1}{\mu(Q_j)} \int_{Q_j} |f_k(y)| dy dz \\ &= \frac{1}{\mu(Q)} \sum_{j \in J} \int_{Q_j} \overline{f}_k(z) dz \end{aligned}$$

And, for $j \in J$, we have that $Q_j \cap Q \neq \emptyset$ and $x \in Q - \tilde{\Omega} \subseteq Q - \tilde{Q}_j$ so by Lemma 5 we have that $Q_j \subseteq \tilde{Q}_j$. Then,

$$\frac{1}{\mu(Q)} \sum_{j \in J} \int_{Q_j} \overline{f}_k(z) dz \leq \frac{1}{\mu(Q)} \int_{\tilde{Q}} \overline{f}_k(z) dz \leq \frac{c}{\mu(\tilde{Q})} \int_{\tilde{Q}} \overline{f}_k(z) dz \leq cM\overline{f}_k(x)$$

So we have that, for all Q containing x , $\frac{1}{\mu(Q)} \int_Q |f_k''(y)| dy \leq cM\overline{f}_k(x)$ and so

$$(7) \quad Mf_k''(x) \leq cM\overline{f}_k(x)$$

for all $x \in \mathbb{R}^n - \tilde{\Omega}$. Then, by (5), (6), and (7), we have

$$\begin{aligned} \mu(\{x \in \mathbb{R}^n : \bar{M}f''(x) > c\alpha\}) &\leq \mu(\{x \in \mathbb{R}^n - \Omega : \bar{M}f''(x) > c\alpha\}) + \mu(\Omega) \\ &\leq \mu(\{x \in \mathbb{R}^n - \Omega : \bar{M}f(x) > \alpha\}) + \mu(\Omega) \\ &\leq \frac{A}{\alpha} \|f\|_1 + \frac{c'}{\alpha} \|f\|_1 \\ &= \frac{c''}{\alpha} \|f\|_1 \end{aligned}$$

which finishes the proof of claim 2. Now we are ready to prove (b). Recall that $f' = f1_F$ and $f'' = f1_\Omega$ where $F \cup \Omega = \mathbb{R}^n$ and $F \cap \Omega = \emptyset$. So, for $x \in \mathbb{R}^n$, either $f(x) = f'(x)$ or $f(x) = f''(x)$. So

$$\bar{M}f(x) = \begin{cases} \bar{M}f'(x) & \text{if } x \in F \\ \bar{M}f''(x) & \text{if } x \in \Omega \end{cases}$$

So,

$$\{x : \bar{M}f(x) > \alpha\} \subseteq \{x : \bar{M}f'(x) > \alpha\} \cup \{x : \bar{M}f''(x) > \alpha\}$$

And so,

$$\mu(\{x : \bar{M}f(x) > \alpha\}) \leq \mu(\{x : \bar{M}f'(x) > \alpha\}) + \mu(\{x : \bar{M}f''(x) > \alpha\}) \leq \frac{c}{\alpha} \|f\|_1$$

which completes the proof of (b). We have now shown that \bar{M} is weak-(1,1) and strong-(2,2) so, by Marcinkiewicz, we have that \bar{M} is strong-(p,p) for $1 < p \leq 2$ so we are left with proving (c) for the case when $p \geq 2$. By Lemma 6, for $q = 2$, we have that, for all j ,

$$\int_{\mathbb{R}^n} (Mf_j(x))^2 \phi(x) dx \leq A \int_{\mathbb{R}^n} |f_j(x)|^2 M\phi(x) dx$$

And so

$$\sum_{j=1}^{\infty} \int_{\mathbb{R}^n} (Mf_j(x))^2 \phi(x) dx \leq A \sum_{j=1}^{\infty} \int_{\mathbb{R}^n} |f_j(x)|^2 M\phi(x) dx$$

Further,

$$\sum_{j=1}^{\infty} \int_{\mathbb{R}^n} (Mf_j(x))^2 \phi(x) dx = \int_{\mathbb{R}^n} \sum_{j=1}^{\infty} (Mf_j(x))^2 \phi(x) dx = \int_{\mathbb{R}^n} (\bar{M}f(x))^2 \phi(x) dx$$

by the Monotone Convergence Theorem. Also,

$$A \sum_{j=1}^{\infty} \int_{\mathbb{R}^n} |f_j(x)|^2 M\phi(x) dx = A \int_{\mathbb{R}^n} \sum_{j=1}^{\infty} |f_j(x)|^2 M\phi(x) dx = A \int_{\mathbb{R}^n} \|f(x)\|_2^2 M\phi(x) dx$$

again, by the Monotone Convergence Theorem, and so we have that

$$\int_{\mathbb{R}^n} (\bar{M}f(x))^2 \phi(x) dx \leq A \int_{\mathbb{R}^n} \|f(x)\|_2^2 M\phi(x) dx$$

Let r be the Holder conjugate of $\frac{p}{2}$ (Note: $\frac{p}{2} \geq 1$) since $p \geq 2$. Then the above gives

$$(8) \quad \sup_{\phi \in L_r : \|\phi\| \leq 1} \int_{\mathbb{R}^n} (\bar{M}f(x))^2 \phi(x) dx \leq \sup_{\phi \in L_r : \|\phi\| \leq 1} A \int_{\mathbb{R}^n} \|f(x)\|_2^2 M\phi(x) dx$$

From our discussion about the dual space of $L_{p/2}$ prior to this theorem, we know

$$\sup_{\phi \in L_r : \|\phi\| \leq 1} \int_{\mathbb{R}^n} (\bar{M}f(x))^2 \phi(x) dx = \|(\bar{M}f)^2\|_{p/2} = \|\bar{M}f\|_p^2$$

So from (8) we have

$$\begin{aligned}
\|\overline{M}f\|_p^2 &\leq \sup_{\phi \in L_r: \|\phi\| \leq 1} A \int_{\mathbb{R}^n} \|f(x)\|_2^2 M\phi(x) dx \\
&\leq \sup_{\phi \in L_r: \|\phi\| \leq 1} A \left(\int_{\mathbb{R}^n} \|f(x)\|_2^{2\frac{p}{2}} dx \right)^{2/p} \left(\int_{\mathbb{R}^n} (M\phi(x))^r dx \right)^{1/r} \\
&= \sup_{\phi \in L_r: \|\phi\| \leq 1} A \|f\|_p^2 \|M\phi\|_r \\
&\leq \sup_{\phi \in L_r: \|\phi\| \leq 1} A \|f\|_p^2 c \|\phi\|_r \\
&\leq cA \|f\|_p^2
\end{aligned}$$

So we have that $\|\overline{M}f\|_p \leq c' \|f\|_p$, which completes the proof of Theorem 1. □

References

1. C. Fefferman and E.M. Stein, *Some Maximal Inequalities*, American Journal of Mathematics, Vol. 93 (1971), pp. 107-115
2. Stein, E.M. (1993), *Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals*. Princeton: Princeton University Press.