
THE REGULARITY THEOREM FOR DISTRIBUTIONS

MATT ZIEMKE

The purpose of this paper is to give a proof of the one-dimensional Regularity Theorem for Distribu-
tions which states that if T is a tempered distribution on R then T is the weak nth derivative of some
polynomially bounded continuous function. We will start by giving the necessary definitions then prove the
N-Representation Theorem for the Schwartz class and for tempered distributions which we will then use to
prove the Regularity Theorem.

Definition 1. A seminorm on a vector space V is a map ρ : V → [0,∞) such that

(i) ρ(x+ y) ≤ ρ(x) + ρ(y)

(ii) ρ(αx) = |α|ρ(x) for all α ∈ C

A family of seminorms (ρα)α∈A is said to separate points if ρα(x) = 0 for all α ∈ A implies x = 0.

Definition 2. A locally convex space is a vector space X with a family of seminorms (ρα)α∈A which
separates points. The natural topology on a locally convex space is the weakest (or smallest) topology for
which all the ρα are continuous and for which the operation of addition is continuous.

Definition 3. If (ρα)α∈A and (dβ)β∈B are two families of seminorms on a vector space X such that the
natural topologies with respect to each family are the same then we say the families (ρα)α∈A and (dβ)β∈B
on X are equivalent.

Proposition 1. Let (ρα)α∈A and (dβ)β∈B be two families of seminorms. Then the families are equivalent
if and only if, for each α ∈ A, there exists β1, β2, . . . , βn ∈ B and C > 0 so that for all x ∈ X

ρα(x) ≤ C (dβ1(x) + · · ·+ dβn
(x))

and for each β ∈ B there exists α1, α2, . . . , αm ∈ A and D > 0 so that for all x ∈ X

dβ(x) ≤ D (ρα1(x) + · · ·+ ραn(x))

Proof. First, suppose the families are equivalent. Let α ∈ A. Then {x : ρα(x) < 1} is τd-open. So there
exists N = Nd

β1,...,βn,ε
such that N ⊆ {x : ρα(x) < 1}. Suppose x ∈ X such that dβk

6= 0 for some k = 1, . . . n.
Then for all k = 1, . . . n,

dβk

(
εx

dβ1(x) + · · ·+ dβn(x)

)
< ε

So,

ρα

(
εx

dβ1(x) + · · ·+ dβn
(x)

)
< 1
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hence,

ρα(x) <
1
ε

(dβ1(x) + · · ·+ dβn(x))

If dβk
(x) = 0 for all k = 1, . . . , n then dβk

(ax) = 0 < ε for all k = 1, . . . , n and so ρα(ax) < 1. Hence,
ρα(x) < 1

a for all a > 0 and therefore ρα(x) = 0. The second statement is symmetric to the first. Now, for
the other direction. Let (xδ)δ∈D be a net in X such that xδ → x in the τd -topology, i.e., dβ(xδ −x)→ 0 for
all β ∈ B. Then,

ρα(xδ − x) ≤ C (dβ1(x) + · · ·+ dβn
(x))→ 0

So ρα is continuous with respect to the τd -topology for all α ∈ A, hence, τρ ⊆ τd. A symmetric argument
shows τd ⊆ τρ.

�

Definition 4. A family (ρα)α∈A of seminorms on a vector space V is called directed if and only if for all
α, β ∈ A there is a γ ∈ A and a C > 0 so that ρα(x) + ρβ(x) ≤ Cργ(x) for all x ∈ V .

Definition 5. If X is a locally convex space then the topological dual, denoted by X∗, is the set of
continuous linear functionals on X with respect to the natural topology.

Definition 6. The Schwartz class, denoted by S(R), is the set of infinitely differentiable complex-valued
functions ϕ on R for which

‖ϕ‖n,m,∞ := sup
x∈Rn

|xnDmϕ(x)| <∞ for all n,m ∈ I+

where I+ = N∪{0}. It is easy to see that (‖ ·‖n,m,∞)n,m∈I+ is a family of seminorms which separates points.

Definition 7. The Space of Tempered Distributions, denoted by S ′(R), is the topological dual of
S(R).

Note. S(R) embeds σ(S ′,S)-continuously into S ′(R) where the σ(S ′,S)-topology is the smallest topology
on S ′(R) such that the maps {γx : S ′(R)→ C|x ∈ X} are continuous, where γx(`) = `(x) for all ` ∈ S ′(R).
Further, S(R) is dense in S ′(R).

Definition 8. Let T ∈ S ′(R) and n ∈ I+. The weak nth derivative of T, denoted DnT , is defined by

(DnT ) (f) = (−1)nT (Dnf)

We are now ready to prove the N-Representation Theorem for S(R) and S ′(R) after a couple more
definitions and lemmas.

Lemma 1. For n,m ∈ I+ define a seminorm ‖ · ‖n,m,2 on S(R) by

‖f‖n,m,2 =
(∫

R
|xnDmf(x)|2dx

)1/2

Then the families of seminorms (‖ · ‖n,m,∞)n,m∈I+ and (‖ · ‖n,m,2)n,m∈I+ on S(R) are equivalent.
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Proof. Let f ∈ S(R) and let g(x) = (1 + x2)−1. Then g ∈ L2(R) and, for n,m ∈ I+,

‖f‖n,m,2 = ‖xnDmf(x)‖2

= ‖ (1 + x2)xnDmf(x)
1 + x2

‖2

=

(∫
R

∣∣∣∣ (1 + x2)xnDmf(x)
1 + x2

∣∣∣∣2 dx
)1/2

≤
(∫

R

‖(1 + x2)xnDmf(x)‖2∞
|1 + x2|2

dx

)1/2

= ‖(1 + x2)xnDmf(x)‖∞‖g‖2

≤ ‖g‖2
(
‖xnDmf(x)‖∞ + ‖xn+2Dmf(x)‖∞

)
≤ C (‖f‖n,m,∞ + ‖f‖n+2,m,∞)

Further, for any f ∈ S(R),

‖f‖∞ = sup
x∈R

∣∣∣∣∫ x

−∞
f ′(x)dx

∣∣∣∣ ≤ ∫
R
|f ′(x)|dx = ‖f ′‖1 ≤ ‖(1 + x2)f ′‖2‖(1 + x2)−1‖2

So we have that

‖f‖n,m,∞ ≤ ‖(1 + x2)
d

dx
(xnDmf(x))‖2‖(1 + x2)−1‖2

= C‖(1 + x2)(nxn−1Dmf(x) + xnDm+1f(x)‖2

≤ C
(
‖nxn−1Dmf(x)‖2 + ‖xnDm+1f(x)‖2 + ‖nxn+1Dmf(x)‖2 + ‖xn+2Dm+1f(x)‖2

)
= C ′ (‖f‖n−1,m,2 + ‖f‖n,m+1,2 + ‖f‖n+1,m,2 + ‖f‖n+2,m+1,2)

So, by Proposition 1, the families of seminorms are equivalent. �

Definition 9. Let A : S(R)→ S(R) and A∗ : S(R)→ S(R) where

A =
1√
2

(
x+

d

dx

)
and A∗ =

1√
2

(
x− d

dx

)
Let N = A∗A and define a seminorm ‖ · ‖∗n on S(R) by ‖f‖∗n = ‖(N + 1)nf‖2. Further, define

φn(x) = (2nn!)−1/2(−1)nπ−1/4ex
2/2

(
d

dx

)n
e−x

2

The functions (φn)n∈I+ are called the Hermite functions.

Lemma 2. The set (φn)n∈I+ is an orthonormal basis for L2(R).

Proof. Let Hn(x) = (−1)nex
2
( ddx )ne−x

2
and let w(x, t) = e2xt−t

2
. Then,(

d

dt

)n
w(x, t)

∣∣∣∣
t=0

=
(
d

dt

)n (
ex

2
e−(x−t)2

)∣∣∣∣
t=0

= (−1)nex
2
(
d

du

)n
e−u

2
∣∣∣∣
u=x

= Hn(x)
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So we have that

(1) w(x, t) = e2xt−t
2

=
∞∑
n=0

Hn(x)
n!

tn

Further,
d

dt
(w(x, t)) = (2x− 2t)w(x, t)

So, by substituting (1), we have

0 =
d

dt

( ∞∑
n=0

Hn(x)
n!

tn

)
− 2x

∞∑
n=0

Hn(x)
n!

tn + 2t
∞∑
n=0

Hn(x)
n!

tn

=
∞∑
n=1

Hn(x)
(n− 1)!

tn−1 − 2x
∞∑
n=0

Hn(x)
n!

tn + 2
∞∑
n=0

Hn(x)
n!

tn+1

=
∞∑
n=0

Hn(x)
n!

tn − 2x
∞∑
n=0

Hn(x)
n!

tn + 2
∞∑
n=1

Hn−1(x)
(n− 1)!

tn

Then, by equating coefficients, we have

Hn+1(x)
n!

− 2xHn(x)
n!

+
2Hn−1(x)
(n− 1)!

= 0

for all n ≥ 1 and hence,

(2) Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0

Similarly,
d

dx
(w(x, t)) = 2tw(x, t)

So, by substituting (1), we have

0 =
∞∑
n=0

H ′n(x)
n!

tn − 2
∞∑
n=1

Hn−1(x)
(n− 1)!

tn

Then, by equating coefficients we get

(3) H ′n(x) = 2nHn−1(x)

Now, substituting (3) into (2) we have

Hn+1(x)− 2xHn(x) +H ′n(x) = 0

⇒ H ′n+1(x)− 2Hn(x)− 2xH ′n(x) +H ′′n(x) = 0

And, therefore,

(4) H ′′n(x)− 2xH ′n(x) + 2nHn(x) = 0
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Let un(x) = e−x
2/2Hn(x). Then,

u′′n(x) = −un(x) + x2un(x)− 2xe−x
2/2H ′n(x) + e−x

2/2H ′′n(x)

= (x2 − 1)un(x) + e−x
2/2 (H ′′n(x)− 2xH ′n(x))

= (x2 − 1)un(x) + e−x
2/2 (−2nHn(x)) by (4)

= (x2 − 2n− 1)un(x)

So, we have that

(5) u′′n(x) + (2n+ 1− x2)un(x) = 0

Now, let n,m ∈ I+ such that n 6= m. Then, by (5),

(6) um(x)u′′n(x) + (2n+ 1)um(x)un(x) = 0 and un(x)u′′m(x) + (2m+ 1)un(x)um(x) = 0

Then, by (6),

d

dx
(u′n(x)um(x)− u′m(x)un(x)) + 2(n−m)um(x)un(x) = u′′n(x)um(x)− u′′m(x)un(x) + 2(n−m)um(x)un(x)

= (−2n− 1 + 2m+ 1 + 2n− 2m)un(x)um(x)

= 0

So,

2(n−m)um(x)un(x) = − d

dx
(u′n(x)um(x)− u′mun(x))

And therefore,

2(n−m)
∫

R
um(x)un(x)dx = −(u′n(x)um(x)− u′m(x)un(x)|

∞
−∞ = 0

Since u′n(x)um(x)− u′m(x)un(x) = p(x)e−x
2/2 → 0 as |x| → ∞ where p is a polynomial of degree n+m+ 1.

Therefore um and un are orthogonal. For n = m, first substitute n−1 forn in (2) and then multiply through
by Hn(x) to get

(7) H2
n(x)− 2xHn(x)Hn−1(x) + 2(n− 1)Hn(x)Hn−2(x) = 0

for n ≥ 2. Similarly,

(8) Hn−1(x)Hn+1(x)− 2xHn−1(x)Hn(x) + 2nH2
n−1(x) = 0

Then, subtracting (8) from (7) we have

0 = H2
n(x) + 2(n− 1)Hn(x)Hn−2(x)−Hn−1(x)Hn+1(x)− 2nH2

n−1(x)

Therefore, by multiplying through by e−x
2/2 and integrating, we have

0 =
∫

R

(
u2
n(x) + 2(n− 1)un(x)un−2(x)− un−1(x)un+1(x)− 2nu2

n−1(x)
)
dx

=
∫

R

(
u2
N (x)− 2nu2

n−1(x)
)
dx by orthogonality

5
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Therefore, ∫
R
u2
n(x)dx = 2n

∫
R
u2
n−1(x)dx

= 4n(n− 1)
∫

R
u2
n−2(x)dx

·

·

= 2nn!
∫

R
e−x

2/2dx

= 2nn!
√
π

Therefore, (φn)n∈I+ is orthonormal. To prove the Hermite functions are an orthonormal basis for L2(R) it
suffices to prove that if ∫

R
e−x

2/2Hn(x)f(x)dx = 0 for all n ∈ I+ then f = 0

So, suppose
∫

R e
−x2/2Hn(x)f(x)dx = 0 for all n ∈ I+. Then, for any t ∈ R,(−it

2

)n
n!

∫
R
e−x

2/2Hn(x)f(x)dx = 0

and hence,

0 =
∞∑
n=0

(−it
2

)n
n!

∫
R
e−x

2/2Hn(x)f(x)dx

=
∫

R

∞∑
n=0

Hn(x)
n!

(
−it
2

)n
e−x

2/2f(x)dx

=
∫

R
e−tx+t

2/4e−x
2/2f(x)dx

Therefore,

F
(
e−x

2/2f
)

(t) =
∫

R
e−x

2/2f(x)e−txdx = 0

And since the Fourier Transform is an isometry on L2(R) we have that e−x
2/2f(x) = 0 and therefore f = 0.

�

Lemma 3. The family of seminorms (‖ · ‖∗n)n∈I+ is a directed family which is equivalent to the
(‖ · ‖n,m,2)n,m∈I+ family of seminorms on S(R).

Proof. Let Ao denote A or A∗. Our first goal is to prove the inequality

‖Ao(1)A
o
(2) · · ·A

o
(m)f‖2 ≤ ‖(N +m)m/2f‖2

Let cn = (−1)n(2nn!
√
π)−1/2 so that φn(x) = cne

x2/2( ddx )ne−x
2/2. Then

Aφn(x) =
cn√
2

(
2xex

2/2

(
d

dx

)n [
e−x

2/2
]

+ ex
2/2

(
d

dx

)n [
−2xe−x

2/2
])

6
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Further, (
d

dx

)n [
−2xe−x

2/2
]

= −2
n∑
ν=0

(
n

ν

)
(x)(ν)(e−x

2
)(n−ν) = −2

(
x(e−x

2
)(n) + n(e−x

2
)(n−1)

)
So, we have that,

Aφn(x) =
cn√
2

(
−2ne−x

2
(
d

dx

)n−1 [
e−x

2
])

=
√
nφn−1(x)

Also,

A∗φn(x) =
1√
2
xφn(x)−

cn√
2
xex

2/2

(
d

dx

)n [
e−x

2
]
− cn√

2
ex

2/2

(
d

dx

)n+1 [
e−x

2
]

= − 1√
2

(−1)n

(2nn!
√
π)1/2

ex
2/2

(
d

dx

)n+1 [
e−x

2
]

=
√
n+ 1φn+1(x)

Therefore, Nφn(x) = A∗Aφn(x) = nφn(x). Now, let f ∈ S(R). Then, by lemma 2, there exists (an)n∈I+ so
that f =

∑∞
n=0 anφn. Then,

‖Ao(1)A
o
(2) · · ·A

o
(m)f‖2 ≤

( ∞∑
n=0

(√
n+ 1

√
n+ 2 · · ·

√
n+m

)2
a2
n

)1/2

≤

( ∞∑
n=0

(n+m)ma2
n

)1/2

= ‖(N +m)m/2f‖2

Now, let n,m ∈ I+ and assume n > m. By our claim,

‖(N + 1)nf‖2 + ‖(N + 1)mf‖2 ≤ C‖(N + 2n)2nf‖2 + C ′‖(N + 2m)2mf‖2

≤ C ′′
( ∞∑

k=0

(k + 2n)2na2
k

)1/2

+

( ∞∑
k=0

(k + 2m)2ma2
k

)1/2


≤ 2C ′′‖(N + 2n)nf‖2

≤ C ′′′‖(N + 1)nf‖2

So, (‖ · ‖∗n)n∈I+ is a directed family of seminorms. The fact that the seminorms (‖ · ‖∗n)n∈I+ are equivalent
to the seminorms (‖ · ‖n,m,2)n,m∈I+ follows immediately from our claim and the equation

xf =
1√
2

(A+A∗) f

and hence,

xk
(
d

dx

)m
f =

(
1√
2

)k+m
(A+A∗)k (A−A∗)m f

�

We are now ready to prove the N-Representation Theorem for S(R) and S ′(R).
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Theorem 1 (The N-Representation Theorem for S(R)). Let s be the set of sequences (an)n∈I+ in C
with the property

sup
n∈I+

|an|nm <∞ for all m ∈ I+

Topologize s by defining the seminorms

‖(an)n∈I+‖2m =
∞∑
n=0

(n+ 1)2m|an|2

Let f ∈ S(R). Then the sequence (an)n∈I+ , where an =
∫

R f(x)φn(x)dx, is in s and the map f 7→ (an)n∈I+
is a topological isomorphism.

Proof. Define ψ : S(R)→ s by ψ(f) = (an)n∈I+ where an =
∫

R f(x)φn(x)dx. Let n ∈ I+. From the proof of
lemma 2, we saw that Nφn = nφn. Now, let f ∈ S(R). Since (φn)n ∈ I+ is an orthonormal basis for L2(R)

there exists (an)n ∈ I+ such that f =
∑∞
n=0 anφn. Well,

∞∑
n=0

ann
mφn =

∞∑
n=0

anN
mφn = Nmf ∈ L2(R)

So,
∞∑
n=0

|an|2n2m = ‖Nmf‖22 <∞

hence,
sup
n∈I+

|an|nm <∞

and therefore (an)n∈I+ ∈ s. Further,

‖f‖∗m = ‖(N + 1)mf‖2 = ‖
∞∑
n=0

an(N + 1)mφn‖2 = ‖
∞∑
n=0

an(n+ 1)mφn‖2

And,

‖
∞∑
n=0

an(n+ 1)mφn‖2 =

( ∞∑
n=0

(n+ 1)2m|an|2
)1/2

= ‖(an)n∈I+‖m

Therefore, ‖f‖∗m = ‖(an)n∈I+‖m. Further, since ‖·‖∗m is actually a norm on S(R) we have that ψ is injective.
Let (an)n∈I+ . For N ∈ N, let fN =

∑N
n=0 anφn. Then, if N < M ,

‖fN − fm‖∗m = ‖(N + 1)m(fN − fM )‖2 =

(
M∑

n=N+1

(n+ 1)2m|an|2
)1/2

→ 0

as N,M →∞. Therefore (fN )N∈I+ is Cauchy in each ‖ · ‖∗m and thus Cauchy in each ‖ · ‖n,m,2 by lemma 3
and hence Cauchy in each ‖ · ‖n,m,∞ by lemma 1, i.e., (fN )N∈I+ is Cauchy in S(R). Therefore, there exists
f ∈ S(R) so that fN → f in S(R) and hence fN → f in L2(R). Thus, f =

∑∞
n=0 anφn and so ψ is onto.

Lastly we want to show ψ is a homeomorphism. If (fn)n∈I+ ⊂ S(R) such that fn → f with respect to ‖ · ‖∗m
then

‖ψ(fn)− ψ(f)‖m = ‖(an)n∈I+ − (bn)n∈I+‖m = ‖fn − f‖∗m → 0
8
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So ψ is continuous. Further, if ((amn )n∈I+)m∈I+ ⊂ s such that (amn )n∈I+ → (bn)n∈I+ as m→∞ with respect
to ‖ · ‖m then

‖ψ−1((an)n∈I+)− ψ−1((bn)n∈I+)‖∗m = ‖fm − f‖∗m = ‖(an)n∈I+ − (bn)n∈I+‖m → 0

So ψ−1 is continuous and therefore ψ is a topological isomorphism.
�

Theorem 2 (The N-Representation Theorem for S ′(R)). Let T ∈ S ′(R) and let bn = T (φn) for all
n ∈ I+. Then for some m ∈ I+, we have |bn| ≤ C(n + 1)m for all n ∈ I+. Conversely, if |bn| ≤ C(n + 1)m

for all n ∈ I+, there is a unique T ∈ S ′(R) with T (φn) = bn. Further, if T ∈ S ′(R) and bn = T (φn) then∑∞
n=0 bnφn converges in the σ(S ′(R),S(R))-topology to T .

Proof. Let T ∈ S ′(R). First, we want to show there exists m ∈ I+ and C > 0 such that |T (φ)| ≤ C‖φ‖m for
all φ ∈ S(R). Well, T−1(B(0, 1)) is open, where B(0, 1) is the ball centered at 0 of radius 1, so there exists
an open neighborhood of zero N ⊆ T−1(B(0, 1)) such that N ∩nk=1 Umk,xk,εk where
Umk,xk,εk = {y ∈ S(R) : ‖y − xk‖mk

< εk}. Further, for all k = 1, ..., n we have that 0 ∈ Umk,xk,εk so
there exists δk > 0 such that Umk,0,δk

⊆ Umk,xk,εk . Then M = ∩nk=1Umk,0,δk
is an open neighborhood of

zero and φ ∈ M if and only if ‖φ‖mk
< δk for all k = 1, . . . , n. Also, note that M ⊆ N ⊆ T−1(B(, 0, 1)).

Since (‖ · ‖n)n∈I+ is directed, there exists m ∈ I+ and C > 0 so that ‖φ‖m1 + · · ·+ ‖φ‖mn ≤ C‖φ‖m for all
φ ∈ S(R). Let ε = min{δ1, . . . , δn}. Then, for k = 1, . . . , n,∣∣∣∣∣∣∣∣ εφ

2C‖φ‖m

∣∣∣∣∣∣∣∣
mk

≤
∣∣∣∣∣∣∣∣ εφ

2C‖φ‖m

∣∣∣∣∣∣∣∣
m1

+ · · ·+
∣∣∣∣∣∣∣∣ εφ

2C‖φ‖m

∣∣∣∣∣∣∣∣
mn

≤ C
∣∣∣∣∣∣∣∣ εφ

2C‖φ‖m

∣∣∣∣∣∣∣∣
m

=
ε

2
< εk

So, εφ
2C‖φ‖m

∈M ⊆ T−1(B(0, 1)) hence ∣∣∣∣T ( εφ

2C‖φ‖m

)∣∣∣∣ ≤ 1

and therefore
|T (φ)| ≤ 2C

ε
‖φ‖m

Hence,
|bn| = |T (φn)‖ ≤ C‖φn‖m = C(n+ 1)m

9
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Conversely, suppose (bn)n∈I+ ⊂ C such that |bn| ≤ C(n + 1)m for some m ∈ I+. Let (an)n∈I+ ∈ s. Define
B : s→ C by B((an)n∈I+) =

∑∞
n=0 bnan. Then,

|B((an)n∈I+)| ≤
∞∑
n=0

|bn||an|

≤
∞∑
n=0

C(n+ 1)m|an|

≤ C
∞∑
n=0

(n+ 1)−1(n+ 1)m+1|an|

≤

( ∞∑
n=0

(n+ 1)2m+2|an|2
)1/2( ∞∑

n=0

1
(n+ 1)2

)1/2

= C

√
π2

6
‖(an)n∈I+‖m+1

So B is a continuous linear functional on s. Then, if ψ is the topological isomorphism from S(R) into s, we
have that B ◦ ψ ∈ S ′(R). Hence, if T = B ◦ ψ then

T

( ∞∑
n=0

anφn

)
= B((an)n∈I+) =

∞∑
n=0

anbn

In particular, T (φn) = bn. Lastly, if bn = T (φn) and f ∈ S(R). Then we can write f =
∑∞
n=0 anφn and( ∞∑

n=0

bnφn

)
(f) =

∫
R

( ∞∑
n=0

bnφn(x)

)
f(x)dx

=
∞∑
n=0

bn

∫
R
φn(x)f(x)dx

=
∞∑
n=0

T (φn)an

= T

( ∞∑
n=0

anφn

)
= T (f)

Hence
∑∞
n=0 bnφn = T in the σ(S ′(R),S(R))-topology. �

Theorem 3 (Regularity Theorem for Distributions). Let T ∈ S ′(R). Then T = Dng for some
polynomially bounded continuous function g and n ∈ I+, that is,

T (f) =
∫

R
(−1)ng(x) (Dnf) (x)dx for all f ∈ S(R)

Proof. Let T ∈ S ′(R). Let bn = T (φn). Then, by the last theorem, |bn| ≤ C(n+ 1)m for some m ∈ I+ and
C > 0. Let an = bn(n+ 1)−(m+3). Note that

‖φn‖∞ ≤ ‖φ′n‖1 ≤ c‖(1 + x2)φ′n‖ ≤ c′(n+ 1)3/2

10
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and so,
∞∑
n=0

|an|‖φ‖∞ =
∞∑
n=0

|bn|
(n+ 1)m+3

‖φ‖∞

≤
∞∑
n=0

C

(n+ 1)3
‖φ‖∞

≤
∞∑
n=0

c′

(n+ 1)3/2

≤ ∞

Therefore,
∑∞
n=0 anφn converges uniformly to some continuous F on R.

Then we have that

(N + 1)m+3F = (N + 1)m+3
∞∑
n=0

anφn

= (N + 1)m+3
∞∑
n=0

bn
(n+ 1)m+3

φn

=
∞∑
n=0

bn
(n+ 1)m+3

(N + 1)m+3φn

=
∞∑
n=0

bn
(n+ 1)m+3

(n+ 1)m+3φn

=
∞∑
n=0

bnφn

= T

where convergence is in the σ(S ′(R),S(R))-topology by theorem 2. So, we have that T = (N + 1)m+3F . It
remains to show that T = Dng for some polynomially bounded continuous function g which is fairly easy to
convince ourselves of but quite tedious to prove formally. One simply has to do integration by parts many
times.

�
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