THE REGULARITY THEOREM FOR DISTRIBUTIONS

MATT ZIEMKE

The purpose of this paper is to give a proof of the one-dimensional Regularity Theorem for Distribu-
tions which states that if T is a tempered distribution on R then 7' is the weak nth derivative of some
polynomially bounded continuous function. We will start by giving the necessary definitions then prove the
N-Representation Theorem for the Schwartz class and for tempered distributions which we will then use to

prove the Regularity Theorem.

Definition 1. A seminorm on a vector space V is a map p: V — [0, 00) such that

(1) plz+y) <p(@)+py)
(i) plaz) =|ajp(x) foralla e C
A family of seminorms (p,)aca is said to separate points if p,(x) = 0 for all & € A implies z = 0.
Definition 2. A locally convex space is a vector space X with a family of seminorms (ps)aca which

separates points. The natural topology on a locally convex space is the weakest (or smallest) topology for

which all the p, are continuous and for which the operation of addition is continuous.

Definition 3. If (py)aca and (dg)sep are two families of seminorms on a vector space X such that the
natural topologies with respect to each family are the same then we say the families (pq)aca and (dg)gen

on X are equivalent.

Proposition 1. Let (po)aca and (dg)sep be two families of seminorms. Then the families are equivalent
if and only if, for each o € A, there exists (1, 02,...,0, € B and C > 0 so that for all x € X

palr) < C(dg, (z) + -+ dg, (7))
and for each 3 € B there exists ay,ag,...,a,;, € A and D > 0 so that for all x € X

dﬁ($) <D (poa (.13) + o+ Pa, (33))

Proof. First, suppose the families are equivalent. Let o« € A. Then {z : p,(z) < 1} is 74-open. So there
exists N = N§ 5 suchthat N C {2 : po(2) < 1}. Suppose 2 € X such that dg, # 0 for some k = 1,...n.

Then for all k =1,...n,
€T

o (dﬁl(:r)ererﬁn(x)) -

So,
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hence,
pale) < = (3, (@) + -+ d, (2)
If dg,(x) = 0 for all k = 1,...,n then dg, (ax) = 0 < e for all k = 1,...,n and so py(az) < 1. Hence,
pa(z) < L for all a > 0 and therefore p, () = 0. The second statement is symmetric to the first. Now, for
the other direction. Let (z5)sep be a net in X such that x5 — « in the 74 -topology, i.e., dg(zs —x) — 0 for
all 8 € B. Then,
palrs —x) < C(dg, () + -+ dg,(z)) = 0
So p. is continuous with respect to the 74 -topology for all a € A, hence, 7, C 74. A symmetric argument
shows 74 C 7,,.
(|

Definition 4. A family (p)aca of seminorms on a vector space V is called directed if and only if for all
a,B € Athereisay € Aand a C > 0 so that p,(z) + pg(x) < Cpy(x) for all z € V.

Definition 5. If X is a locally convex space then the topological dual, denoted by X*, is the set of

continuous linear functionals on X with respect to the natural topology.

Definition 6. The Schwartz class, denoted by S(R), is the set of infinitely differentiable complex-valued

functions ¢ on R for which
[#lln,m,00 = sup |z"D™p(z)| < oo forall n,m € I,
IER‘H

where I, = NU{0}. It is easy to see that (|- |/n,m 00 )n,mer, is a family of seminorms which separates points.

Definition 7. The Space of Tempered Distributions, denoted by S’(R), is the topological dual of
S(R).

Note. S(R) embeds o(S8’,S)-continuously into S'(R) where the o(S’, S)-topology is the smallest topology
on §'(R) such that the maps {7, : S'(R) — C|z € X} are continuous, where 7, (¢) = {(z) for all £ € §'(R).
Further, S(R) is dense in S'(R).

Definition 8. Let T' € S'(R) and n € I;. The weak nth derivative of T, denoted D™T), is defined by

(D7) (f) = (=1)"T (D" f)

We are now ready to prove the N-Representation Theorem for S(R) and S’(R) after a couple more

definitions and lemmas.

Lemma 1. For n,m € I define a seminorm || - ||, m.2 on S(R) by

1/2
1 s = ( / D f(:v)|2dx>

Then the families of seminorms (|| - ||,m,00 )n;mer, and (|| - [[n,m,2)n,mer, on S(R) are equivalent.
2
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Proof. Let f € S(R) and let g(x) = (1 +22)~!. Then g € Lo(R) and, for n,m € I,

1 llamz = D™ f()]l2
_ ket D)

1+ 22
([0t D@\
B /]R 1+ 22 .
[+ a2y D ()
< ([ )
0+ 22)2" D™ () | gl

< lgllz (2" D™ f(@)lloo + lz"*2D™ f(2) | o0)
C (Hf”n,m,oo + Hf||n+27m,00)

/_g; f(z)dx

d
£ llnm,oe < 1L+ 2%) (2" D™ f(2))l|2/1(1 + 2%) 7|2
= C||(1 + 2*)(na" "' D™ f(x) + 2" D" f ()2
< C (Ina" ' D™ f(@)]l2 + l2" D™ f (@) |2 + [[na™ D™ f(2)l2 + |22 D™ f (2)]|2)

= C" (Ifln—1m2 + 1 fllnmt12 + [ FlIntrmz + [ flnt2mer,2)

2

IN

Further, for any f € S(R),

[[flloc = sup
z€R

< / |/ (@)lda = s < A+ 2?) 2l +22) 72
R

So we have that

So, by Proposition 1, the families of seminorms are equivalent. O

Definition 9. Let A: S(R) — S(R) and A* : S(R) — S(R) where

1 d 1 d
A= — £ d A= —(a-2Z
alrin) o= (i)
Let N = A*A and define a seminorm || - || on S(R) by |||} = ||(N 4+ 1)" f||2. Further, define

1
LA
dx

(
bn(z) = (2"0)) "2 (—1)ng /4 <

The functions (¢, )ner, are called the Hermite functions.

Lemma 2. The set (¢y)ncr, is an orthonormal basis for La(R).

Proof. Let H,(x) = (—1 ner’ (Lyne=2” and let w(z,t) = 21", Then,
dz )

(3) v

RO

n x? d " —u? _
. =(—=1)"e (du) e = H,(z)
3
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So we have that

(1) w(z,t) = 271 — Z Mt"

|
= !
Further,

d
5 (Wl 1) = 22 = 2t)w(,1)

So, by substituting (1), we have
H,(
t”) — 2% Z ) gn

d [ H,(x)
0: —

dt (nz:% ’I’L' n=0

= Hn() n— n n
=3 (n—?)!t L 2x; ), +22 Hn(2) i1

n=1
o0 oo
H _
=3 A Do gy o) "
n=0 n: n=0 n=1 (n_ )

Then, by equating coefficients, we have

Hyq1(z) 2zH,(x) 2H,_1(x)

_ -0
n! n! (n—1)!

for all n > 1 and hence,
(2) Hpi1(z) — 22Hy(z) + 2nHy—1(x) =0

Similarly,

d
e (w(zx,t)) = 2tw(x,t)

So, by substituting (1), we have

o0
H (
0= _QZ n—l

n=0

Then, by equating coeflicients we get
3) HY(2) = 2nH, 41 (2)
Now, substituting (3) into (2) we have

Hy1(z) — 22H,(z) + H, () =0

= H, (z) — 2H, () — 2zH),(x) + H};(z) = 0
And, therefore,

(4) H)(z) — 2zH, (z) + 2nH,(z) =0
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Let up(z) = e~* /2H,,(z). Then,
WN(2) = —un(2) + 2%un(2) — 2z 2H! (z) + e~ /2H (z)
= (¢ = Dun(a) + e~/ (H)/(2) — 20H}, ()
= (% = Dun(x) + ¢/ (~2nH, (2)) by (4)
= (2% = 2n — Duy,(z)
So, we have that

(5) u(z) + (2n+1—2H)u,(z) =0

Now, let n,m € I, such that n # m. Then, by (5),

(6) U () U () + (20 4+ Dty (2)un () =0 and  wp (z)ul, () + (2m + Dy (2)um(z) =0
Then, by (6),
% (i ()t () = i, ()0 (2)) + 2(n = M)ty ()t (2) = 1 ()t () = g, (€0 () + 2(n = M)ty () ()
=(—2n—142m+ 14 2n — 2m)u,(z)um,(x)
=0
So,
d I !
2(n = m)um (2)un(2) = === (U (@) um (2) — i, un(2))

And therefore,
2(n —m) /Rum(x)un(:c)dz = —(ul, ()um(z) — u;n(x)un(xﬂo_ooo =0

—x2/2

Since u), () tn, () — uh, (2)un(z) = p(z)e — 0 as |z| — oo where p is a polynomial of degree n+m + 1.

Therefore u,, and u,, are orthogonal. For n = m, first substitute n — 1 forn in (2) and then multiply through
by H,(x) to get

(7) H2(z) — 22H, (2)Hy_1 (%) + 2(n — 1) Hy (2)Hy_o(z) = 0
for n > 2. Similarly,
(8) Hy 1 (2)Hpy1(x) — 22H, 1 (z)H,(z) + 2nH2_,(z) =0
Then, subtracting (8) from (7) we have
0=H>(z)+2n—1)H,(2)H,_2(z) — Hy_1(2)Hpy1(z) — 2nH?_,(2)
z2/2

Therefore, by multiplying through by e~ and integrating, we have

0= / (u2(2) + 2(n — Dup(z)tn—2(2) — Un—1(2)uni1 () — 2nul_ (2)) d
R

= /R (ux (z) — 2nuZ_ (z)) dz by orthogonality
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Therefore,

/ﬂ@ui(x)dszn/ﬂ@u%fl(x)dm
— dn(n - 1)/}1{“3,2(1;)65:3

:2”n!/67m2/2d:€
R

= 2"nl\/7

Therefore, (¢ )ner, is orthonormal. To prove the Hermite functions are an orthonormal basis for Lo(R) it

suffices to prove that if
/ e_xz/QHn(x)f(x)dx =0 forallnel; then f=0
R

So, suppose [, 67$2/2Hn(x)f(m)dx =0 for all n € I,. Then, for any ¢ € R,

(;it
2

)n —w2/2 _
/Re Hy(x)f(z)dz =0

n!
and hence,
o (5" [ e
O:Z py Re H,(z)f(z)dz
n=0
= / y Hole) <> 2 f(x)de
Rn:O n. 2
:/eftnngtQ/ziefag"’/zf(x)dl,z7
R
Therefore,

F (e_””2/2f) (t) = / e_””2/2f(a:)e_mdx =0
R

And since the Fourier Transform is an isometry on Ly(R) we have that e=*/2f(z) = 0 and therefore f = 0.

O

Lemma 3. The family of seminorms (|| - [|},)ner, is a directed family which is equivalent to the

(I - lIn,m,2)n,mer, family of seminorms on S(R).

Proof. Let A° denote A or A*. Our first goal is to prove the inequality
[AQ ALy - - Afy Fll2 < (N +m)™ 2 f 12

Let ¢, = (=1)*(2"n!\/m)~ /2 so that ¢, (z) = cnez2/2($)”e’12/2. Then

=3 s () [ () )
6
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Further,

(i)n |—2we="2] = —2;::0 (Z) (2)) (=) = =2 (™) 4 n(e=") D)

So, we have that,

Also,

= Vn+1¢ni1(2)

Therefore, Ny, (v) = A*App(x) = ngn (). Now, let f € S(R). Then, by lemma 2, there exists (a,)ner, so
that f = > an¢n. Then,

||A(()1)A(()2) T A?m)f”Q

IN

- 1/2
(Z (\/n+1\/n+2~~~\/n+m)2ai>
n=0

n=0

oo 1/2
< (Soemra)
= IV +m)™ 2 f|2
Now, let n,m € I, and assume n > m. By our claim,

IV + D)™ fllz + [V + 1) fll2 < CII(N +20)*" fll2 + C'[[ (N + 2m)*™ |2

- 1/2 - 1/2
<c” (Z(k + 2n)2”ai> + (Z(k’ + 2m)2mai>

k=0 k=0
< 2C"[|(N +2n)" f]2
< CII(N +1)" fl2

So, (Il - I3 )ner, is a directed family of seminorms. The fact that the seminorms (|| - ||;;)ner, are equivalent

to the seminorms (|| - ||n,m,2)n,mer, follows immediately from our claim and the equation
1

— (At A

ﬁ( ) f

. d m 1 k+m .

— =(—= A+ A (A—AH™

H(4) 1=(55)  @rara-ayry

zf

and hence,

We are now ready to prove the N-Representation Theorem for S(R) and S’'(R).
7
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Theorem 1 (The N-Representation Theorem for S(R)). Let s be the set of sequences (ay,)ner, in C
with the property

sup |ap|n™ < oo forallme Iy
nely

Topologize s by defining the seminorms

o0

(an)ner o =D (0 +1)*"]an |

n=0
Let f € S(R). Then the sequence (ay)ner, , where a, = [ f(x)¢n(z)dz, is in s and the map f — (an)ner,

is a topological isomorphism.

Proof. Define ¢ : S(R) — s by ¥(f) = (an)ner, where a,, = [, f(x)dn(x)dx. Let n € I. From the proof of
lemma 2, we saw that N¢,, = n¢,. Now, let f € S(R). Since (¢, )n € I, is an orthonormal basis for Ly (R)
there exists (a,)n € I} such that f =07 an¢,. Well,

iannmqﬁn = i anN™¢, = N f € La(R)
n=0

n=0

So,
o0
D lan?n®™ = [INTf]3 < o0
n=0

hence,

sup |a,|n™ < 0o
nely

and therefore (ay)ner, € s. Further,

117 = I + D)™ fllz = 1Y an(N + 1" ulla = 11 Y an(n +1)"dull2

n=0 n=0
And,
o o 1/2
1D an(n +1)"dull2 = (Z(n + 1)2man|2> = l[(@n)ner, lIm
n=0 n=0
Therefore, || f||%, = ||(an)ner, ||m- Further, since |||}, is actually a norm on S(R) we have that 1) is injective.

Let (an)ner,. For N € N, let fx = SN a0, Then, if N < M,

o 1/2
1N =l = (N + D)™ (5 = far)ll2 = ( > (n+ 1)2m|an|2> -0
n=N-+1
as N, M — oo. Therefore (fn)ner, is Cauchy in each [| - ||;, and thus Cauchy in each || - [[,,;m,2 by lemma 3
and hence Cauchy in each || - [|n,m,00 by lemma 1, ie., (fn)ner, is Cauchy in S(R). Therefore, there exists

f € 8(R) so that fy — f in S(R) and hence fy — f in Ly(R). Thus, f = > 77 an¢p and so ¢ is onto.
Lastly we want to show 1 is a homeomorphism. If (fy)ner, C S(R) such that f, — f with respect to || - ||},
then

[9(fn) = V() llm = l[(an)ner, N (On)neryllm = Ifn =l — 0
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So 9 is continuous. Further, if ((a]')ner, Jmer, C s such that (a)')ner, — (bn)ner, as m — oo with respect

n
to || - ||m then

1™ ((an)ner,) = ¥~ (bn)ner )l = 1™ = flls = (an)ner, = (bu)ner, lm — 0

So 1~ is continuous and therefore 1) is a topological isomorphism.

Theorem 2 (The N-Representation Theorem for S'(R)). Let T € S'(R) and let b, = T(¢,,) for all
n € Iy. Then for some m € I, we have |b,| < C(n+ 1)™ for all n € I,. Conversely, if |b,| < C(n+ 1)™
for all n € I, there is a unique T' € §'(R) with T(¢,,) = by,. Further, if T € S'(R) and b,, = T'(¢,,) then
S0 ) buon converges in the o(S'(R), S(R))-topology to T.

n=0

Proof. Let T € §'(R). First, we want to show there exists m € I, and C > 0 such that |T(¢)| < C||¢||m for
all ¢ € S(R). Well, T=1(B(0,1)) is open, where B(0,1) is the ball centered at 0 of radius 1, so there exists
an open neighborhood of zero N C T—(B(0,1)) such that N N?_; Uy, 2, ., Where

Uy ap.ern = 1y € SR) ¢ |ly — 2kllm, < €x}. Further, for all k = 1,....,n we have that 0 € Up, z;.c, SO
there exists 6 > 0 such that Up,, 05, € Umy,zp,en- Then M = N7_1Up, 0,5, is an open neighborhood of
zero and ¢ € M if and only if ||¢|/m, < 6 for all k = 1,...,n. Also, note that M C N C T=*(B(,0,1)).
Since (|| - [|n)ner, is directed, there exists m € I and C' > 0 so that ||@||,, + - 4 [|}|lm, < C[@||m for all
¢ € S(R). Let ¢ = min{dy,...,d,}. Then, for k=1,...,n,

z2it . = |zt |, =+ |zt .. < ators |, =

< +o <C =5 <¢
H20|¢||m Hmk HQC||¢|m m 2C1|llm {1, 20| llm |1, 2
So, W‘f;”m € M CT~YB(0,1)) hence

1 (aier. )| =

2C
7@ < —lIdlm

and therefore

Hence,

bn| = [T(¢n)]| < Cllpnllm = C(n+1)™
9
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Conversely, suppose (b, )ner, C C such that |b,| < C(n 4 1)™ for some m € I.. Let (an)ner, € s. Define
B:s— Cby B((an)ner,) = > peobnan. Then,

|B((an)ner, )| < Z |br || @
n=0

<Y Cln+1)"an]

n=0

<Y (n+1) "M+ 1) a,)
n=0

- 12 , o 1/2
n 2m+2|, |2 R
< (E (n+1) [ ) (;_0: (n+ 1)2)

n=0
’/T2
=C E”(a")"@u [lmt1

So B is a continuous linear functional on s. Then, if ¢ is the topological isomorphism from S(R) into s, we
have that B o € §'(R). Hence, if T = B o 1) then

T (Z an¢n> = B((an)ner,) = Zanbn
n=0

n=0

In particular, T(¢,,) = by. Lastly, if b, = T(¢,) and f € S(R). Then we can write f = > °  a,¢, and

butn | () = butn(2) | f(x)da
(o) - [ (S o)
-3 / 6 (2) f(2)da

= Z T(¢n)an
(5

n=0

=T(f)

Hence Y07 by¢, = T in the o(S'(R), S(R))-topology. O

Theorem 3 (Regularity Theorem for Distributions). Let 7' € S'(R). Then T' = D"g for some

polynomially bounded continuous function g and n € I, that is,

T(f) = / (—1)"g(x) (D" f) (x)dz for all f € S(R)

Proof. Let T € S'(R). Let b, = T(¢y,). Then, by the last theorem, |b,| < C(n + 1)™ for some m € I and
C > 0. Let a,, = b,(n+1)~™+3) Note that

16nlloe < lnlls < cll(L+ )|l < ¢ (n+ 1)/
10
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and so,

by,
(+'1)'m+3|¢>||w

Z |anll|¢lloc =

C/

< (n+ 1)57?

IN

g ||M8 |P|/%8 ||M8

IN

Therefore, ZZO:O an ¢y converges uniformly to some continuous F' on R.
Then we have that

(N+1)"3F = (N+ 1) andy,
n=0

(N+1m+3z bn

= (n+ 1)m+3¢

bn,

G (VD0

tnqg

3
i
=]

M

eI

= Z n¢n

8ﬁ
o

=T

where convergence is in the o(S'(R), S(R))-topology by theorem 2. So, we have that T'= (N + 1)™T3F. It
remains to show that T'= D™g for some polynomially bounded continuous function g which is fairly easy to
convince ourselves of but quite tedious to prove formally. One simply has to do integration by parts many

times.

]

11
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